最小二乘法

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳 函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于 曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。发现历史










































发现历史

最小二乘法最小二乘法(1)

1801年,意大利天文学家 朱赛普·皮亚齐发现了第一颗小 行星 谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后全世界的科学家利用皮亚齐 的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻 找谷神星都没有结果。时年24岁的 高斯也计算了谷神星的轨道。 奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。

高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。

法国科学家 勒让德于1806年独立发明“最小二乘法”,但因不为世人所知而默默无闻。

勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。

1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-马尔可夫定理。(来自于wikipedia


argmin()

使 X的2范数 值最小 的 X的值
        2范数 二范数 矩阵A的2范数就是 A的转置矩阵乘以A特征根 最大值的开根号
        argmin是使得某个泛函取得最小值的函数


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

主要原理

在我们研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1.x2,y2... xm,ym);将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以令这条 直线方程如(式1-1)。

(式1-1)

其中:a0、a1 是任意实数

为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用计算值Yj(Yj=a0+a1Xi)(式1-1)的离差(Yi-Yj)的平方和

最小为“优化判据”。

令:φ =

(式1-2)

把(式1-1)代入(式1-2)中得:

φ =

(式1-3)

最小时,可用函数 φ 对a0、a1求偏导数,令这两个 偏导数等于零。

∑2(a0 + a1*Xi - Yi)=0(式1-4)

∑2Xi(a0 +a1*Xi - Yi)=0(式1-5)

亦即:

na0 + (∑Xi ) a1 = ∑Yi (式1-6)

(∑Xi ) a0 + (∑Xi^2 ) a1 = ∑(Xi*Yi) (式1-7)

得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:

a0 = (∑Yi) / n - a1(∑Xi) / n (式1-8)

a1 = [n∑(Xi Yi) - (∑Xi ∑Yi)] / (n∑Xi^2 -∑Xi∑Xi)(式1-9)

这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的一元线性方程即:数学模型。

在回归过程中,回归的关联式不可能全部通过每个回归数据点(x1,y1. x2,y2...xm,ym),为了判断关联式的好坏,可借助 相关系数“R”, 统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。

R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *

在(式1-10)中,m为 样本容量,即实验次数;Xi、Yi分别为任意一组实验数据X、Y的数值。


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求点与点之间近似成线性关系时的经验公式. 假定实验测得变量之间的 n个数据, 则在 平面上, 可以得到 n个点 , 这种图形称为“ 散点图”, 从图中可以粗略看出这些点大致散落在某直线近旁, 我们认为 与 之间近似为一线性函数, 下面介绍求解步骤.

考虑函数 y=a+bx, 其中a 和 b是待定常数. 如果离散点完全的在一直线上,可以认为变量之间的关系为一元函数 . 但一般说来, 这些点不可能在同一直线上. 但是它只能用直线来描述时, 计算值与实际值会产生偏差. 当然要求偏差越小越好, 但由于偏差可正可负, 因此不能认为总偏差时, 拟合函数很好地反映了变量之间的关系,但是因为此时每个偏差的绝对值可能很大. 为了改进这一缺陷, 就考虑用平均值来代替 . 但是由于绝对值不易作解析运算, 因此, 进一步用残差平方和函数来度量总偏差. 偏差的平方和最小可以保证每个偏差都不会很大. 于是问题归结为确定拟合函数中的常数和使残差平方和函数最小. 通过这种方法确定系数的方法称为最小二乘法.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
实例

数据编号

1

2

3

4

实验次数 w

2

1

1

1

x

0.1

0.2

0.3

0.4

y

1.1

1.9

3.1

3.9

要拟合得到形如 y = a + b x 的函数,求解函数中系数的方程组为

其中,为权重,对应每个实验点的实验次数,4个实验点只有第一个点重复做了一次且得到相同结果(如果结果不同则另算一个实验点),其它都没有重复实验,因此总次数为5次。

解得

故拟合方程为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值