FlyFlow:实现接口驱动的远程审批人员动态加载功能

FlyFlow 介绍

官网地址:www.flyflow.cc

演示网址:pro.flyflow.cc

FlyFlow 借鉴了钉钉与飞书的界面设计理念,致力于打造一款用户友好、快速上手的工作流程工具。相较于传统的基于 BPMN.js 的工作流引擎,我们提供的解决方案显著简化了操作逻辑,使得用户能够在极短的时间内构建定制化的业务流程,即便是不具备深厚技术背景的普通用户也能迅速掌握,实现零门槛的高效工作流配置。

本次更新:

  1. 新增:审批人、抄送人和抢单人等支持远程加载人员
  2. 新增:条件分支和包容分支支持远程条件判断
  3. 新增:分割线表单
  4. 优化:H5支持附件下载
  5. 优化:添加版本号时校验判空
  6. 优化:临时数据缓存添加租户前缀并添加过期时间
  7. 优化:是否支持跨域添加配置项
  8. 修复:流程预测中有多个分支时,切换分支相互收到影响
  9. 修复:不同jdk版本使用lambda表单获取枚举值异常
  10. 修复:获取审批人等部门级别下的人员范围错误

基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值