以武会友,两大主流联邦学习产品体验

本文对比了FATE和FMPC两款联邦学习产品,从系统架构、数据管理、模型训练、模型预测和性能评估等方面进行详细阐述。FATE适合技术人员,强调算法和开发能力,而FMPC则面向业务人员,提供可视化操作。在功能上,FMPC增加了特征分析和筛选。性能方面,FATE的secureBoost在精度和速度上有优势,而FMPC的‘松弛迭代法’在速度上提升明显。
摘要由CSDN通过智能技术生成

如今,AI技术在几乎每个行业中都展现出了自己的优势,无人驾驶汽车,医疗保健,互联网金融等已经深入我们的生活。然而随着大数据和AI技术的逐渐成熟,各机构和组织对数据安全和用户隐私的妥协意识也日益增强,对数据隐私和安全的重视已成为全球性的重要问题。同时欧盟于2018年5月25日发布实施了《通用数据保护条例》 [GDPR], 旨在保护用户的个人隐私和数据安全,中国和美国也正在制定类似的隐私和安全法案。受此影响,国内外多方安全计算产业化应用的步伐明显加快。在国外产品创新活跃的同时,国内多方安全计算的技术产品蓬勃发展,已经形成了一定的优势。

纵览国内外,不乏一些优秀的产品和系统,早在2016年谷歌公司就提出了联邦学习的概念,经过多轮的打磨推出了TensorFlow Federated;英伟达公司也在NVIDIA NGC-Ready 服务器上开发了用于分布式协作联邦学习训练的Clara FL;国内也有许多优秀的学者先驱,其中既有老牌的技术大厂,也有新晋的优秀团队,共同在这条赛道驰骋,为隐私计算、安全建模不断添砖加瓦。

据笔者了解,国内市场已有如下公司各自推出了相关的产品:

  • FATE:微众银行AI团队推出的工业级联邦学习框架
  • MORSE:蚂蚁区块链打造的数据安全共享基础设施
  • PrivPy:华控清交研发的安全多方计算平台
  • FMPC:富数科技推出的私有化部署联邦建模平台
  • 蜂巢系统:平安科技自主研发的联邦智能系统
  • 点石平台:百度研发的可信云端计算及联合建模平台


本文优先选择FATE、FMPC两款产品,从产品界面、性能、使用方法等方面与大家进行分享。其他平台分析及使用我们将在后续系列文章更新,感兴趣的同学可持续关注。

本次将从系统架构、数据管理,模型训练,模型预测,性能评估五个方面依次进行介绍:

一、FATE联邦学习框架 – v1.2

1、系统架构:

1)FATE技术架构如(图1)所示,部分模块简介如下:

  • EggRoll:分布式计算和存储的抽象;
  • Federated Network:跨域跨站点通信的抽象;
  • FATE FederatedML:联邦学习算法模块,包含了目前联邦学习所有的算法功能;
  • FATE-Flow | FATE-Board:完成一站式联邦建模的管理和调度以及整个过
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值