Python常用算法思想--回溯算法思想详解【附源码】

本文详细介绍了如何使用回溯算法解决组合、排序(全排列)、八皇后问题、0-1背包问题以及字符串匹配问题,提供源码实例。通过这些经典案例,深入理解回溯算法的应用。
摘要由CSDN通过智能技术生成

通过回溯算法解决“组合”问题、“排序”问题、“搜索”之八皇后问题、“子集和”之0-1背包问题、字符串匹配等六个经典案例进行介绍:

一、解决“组合”问题

从给定的一组元素中找到所有可能的组合,这段代码中的 backtrack_combinations 函数使用了回溯思想,调用 backtrack_combinations 函数并返回结果。使用了一组给定的元素 [1, 2, 3, 4],并要求找到所有包含 3 个元素的组合,具体代码如下:

def backtrack_combinations(nums, k, start, path, result):
    if k == 0:
        result.append(path[:])
        return

    for i in range(start, len(nums)):
        path.append(nums[i])
        backtrack_combinations(nums, k - 1, i + 1, path, result)
        path.pop()

def combinations(nums, k):
    result = []
    backtrack_combinations(nums, k, 0, [], result)
    return result

# 测试示例
nums = [1, 2, 3, 4]
k = 3
print(f"All combinations of {k} elements from {nums}:")
print(combinations(nums, k))

二、解决“排序”问题

找到一组元素的所有可能的排列。这段代码中,backtrack_permutations 函数使用了回溯思想来递归地生成排列,调用 backtrack_permutations 函数并返回结果。使用了一组给定的元素 [1, 2, 3,4],并找到了所有可能的排列,具体代码如下:

def backtrack_permutations(nums, path, visited, result):
   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

helloshili2011

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值