每日学习,泊松分布公式推导

本文通过将泊松分布视为二项式分布的极限情况,提供了一种直观理解泊松分布公式的方法。这种视角有助于深入理解泊松分布的本质及其在实际应用中的有效性。

以前学习泊松分布,但是不知道为啥公式长那样,现在发现一个很好的推导过程,就是把他看成二项式分布。
在这里插入图片描述
在这里插入图片描述

泊松分布是二项分布在试验次数 $n$ 趋于无穷大时的一种极限情况。下面给出泊松分布公式推导过程: 设二项分布中,每次试验成功的概率为 $p$,试验次数为 $n$,成功的次数为 $k$,则二项分布的概率质量函数为: $P(X = k) = C_{n}^{k}p^{k}(1 - p)^{n - k}$,其中 $C_{n}^{k}=\frac{n!}{k!(n - k)!}$ 假设在一段时间 $t$ 内,事件平均发生的次数为 $\lambda$,并且将这段时间 $t$ 等分成 $n$ 个小的时间段,每个小时间段内事件发生的概率为 $p$,则有 $\lambda = np$,即 $p=\frac{\lambda}{n}$。 将 $p=\frac{\lambda}{n}$ 代入二项分布的概率质量函数中: $P(X = k) = C_{n}^{k}(\frac{\lambda}{n})^{k}(1 - \frac{\lambda}{n})^{n - k}$ $=\frac{n!}{k!(n - k)!}(\frac{\lambda}{n})^{k}(1 - \frac{\lambda}{n})^{n - k}$ $=\frac{n(n - 1)\cdots(n - k + 1)}{n^{k}}\cdot\frac{\lambda^{k}}{k!}\cdot(1 - \frac{\lambda}{n})^{n}\cdot(1 - \frac{\lambda}{n})^{-k}$ 当 $n \to \infty$ 时: - 对于 $\frac{n(n - 1)\cdots(n - k + 1)}{n^{k}}$,分子分母同时除以 $n^{k}$,当 $n \to \infty$ 时,$\frac{n(n - 1)\cdots(n - k + 1)}{n^{k}} \to 1$。 - 对于 $(1 - \frac{\lambda}{n})^{-k}$,当 $n \to \infty$ 时,$(1 - \frac{\lambda}{n})^{-k} \to 1$。 - 对于 $(1 - \frac{\lambda}{n})^{n}$,根据重要极限 $\lim_{n \to \infty}(1+\frac{a}{n})^{n}=e^{a}$,这里 $a = -\lambda$,所以 $\lim_{n \to \infty}(1 - \frac{\lambda}{n})^{n}=e^{-\lambda}$。 综上,当 $n \to \infty$ 时,$P(X = k)=\frac{\lambda^{k}}{k!}e^{-\lambda}$,这就是泊松分布的概率质量函数,其中 $\lambda$ 是单位时间(或单位面积、单位体积等)内随机事件的平均发生次数,$k$ 是实际发生的次数,$k = 0, 1, 2, \cdots$。 ### 代码示例 以下是使用 Python 实现泊松分布概率计算的代码: ```python import math def poisson_distribution(k, lam): return (lam**k * math.exp(-lam)) / math.factorial(k) # 示例:计算 lambda = 3,k = 2 的泊松分布概率 lam = 3 k = 2 probability = poisson_distribution(k, lam) print(f"当 lambda = {lam},k = {k} 时,泊松分布的概率为: {probability}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值