泊松分布的推导(每一步详细解释,三分钟学会)

        不知道小伙伴们在学概率论的时候有没有疑惑泊松分布的公式是怎么推导出来的,今天我们就从二项分布的基础上推一下泊松分布的公式。

不说废话,直接开始证明:

       在独立实验中,事件A在实验中出现的概率与实验的总数n有关,记为p_{n},n次实验中,事件A出现的次数记为X,X\sim B(n,p_{n})。所以就有:P(X=i)= \binom{n}{i} p^{i}_{n}(1-p_{n})^{n-i},这不就是二项分布嘛,我们记\lambda _{n}=np_{n},如果有\lim_{n \to \infty }\lambda _{n}=\lambda,那么有

P(X=i;n,p_{n})= \frac{1}{i!}\lambda ^{i}e^{-\lambda}

证明:\lim_{n \to \infty }P(X=i;n,p_{n})=\lim_{n \to \infty }\binom{n}{i}p^{i}_{n}(1-p_{n})^{n-i}

                                                        =\lim_{n \to \infty }\frac{n!}{i!(n-i)!}\frac{\lambda ^{i}_{n}}{n^{i}}(1-\frac{\lambda _{n}}{n})^{n}(1-\frac{\lambda _{n}}{n})^{-i}

这里其实就是把各个项给展开了,并且根据上述假设将   p_{n}=\frac{\lambda _{n}}{n}   换了一下,后面的二项式给分成了两项,应该不难理解吧,嗯哼,那我们接着证明

                                                       =\lim_{n \to \infty }\frac{n(n-1)\cdot \cdot \cdot (n-i+1)}{n^{i}}\frac{\lambda ^{i}_{n}}{i!}(1-\frac{\lambda _{n}}{n})^{n}(1-\frac{\lambda _{n}}{n})^{-i}

这一步我们主要是对第一项进行化简,然后再将前两项的分母换一下位置,那此时我们再将\lim_{n \to \infty }\lambda _{n}=\lambda带入,则有

                                                       =\frac{\lambda^{i}}{i!}\lim_{n \to \infty }\frac{n(n-1)\cdot \cdot \cdot (n-i+1)}{n^{i}}\frac{\lambda ^{i}}{i!}(1-\frac{\lambda }{n})^{n}(1-\frac{\lambda }{n})^{-i}

                                                       =\frac{\lambda ^{i}}{i!}\times 1\times e^{-\lambda }\times1

这里求极限我们可以看到,第一项分子分母最高次相同,所以极限为1,第二项是两个重要极限的变形,如有疑问的话可以看看高数或者数学分析的课本,第三项极限显然是1。

      会不会有小伙伴有疑问,为什么可以单独求完极限再相乘,这样是可以的啦,因为它们每项都是相乘的并且求完极限存在,所以是可以的,这个数分里面有讲哦,因为我学的数分,我不太清楚学高数的小伙伴的书里面是怎么描述的,我想应该也是有的。

那么我们就可以得到最后的结论啦

                                                          = \frac{1}{i!}\lambda ^{i}e^{-\lambda}

所以就有

                                              P(X=i;n,p_{n})= \frac{1}{i!}\lambda ^{i}e^{-\lambda}

当然,这里需要满足的是n比较大,p比较小的情况,当出现这类情况时,二项分布就可以用泊松分布近似代替。

     至于怎么实际应用,我想其他csdn的小伙伴已经讲的很清楚了,我就不班门弄斧啦。

     如有说错的地方,欢迎批评指正。

Python列表推导式是一种快速构建列表的方式。它允许你使用一种简单而又清晰的方式来定义列表,而不用编写大量的代码。 Python列表推导式格式: [expression for item in iterable if condition] 其中,expression 表示要在列表中生成的元素,item 是迭代对象中的元素,iterable 是需要迭代的对象,condition 是可选的筛选条件。 举个例子: 假设我们有一个列表,里面包含了一些数字,我们需要将这些数字平方后生成一个新的列表,可以使用以下列表推导式: ``` numbers = [1, 2, 3, 4, 5] squares = [num ** 2 for num in numbers] print(squares) # [1, 4, 9, 16, 25] ``` 在这个例子中,expression 是 num ** 2,表示将 num 平方后得到的结果。item 是 numbers 中的元素,iterable 是 numbers,condition 没有使用。 列表推导式还可以包含条件语句,例如: ``` numbers = [1, 2, 3, 4, 5] squares = [num ** 2 for num in numbers if num % 2 == 0] print(squares) # [4, 16] ``` 在这个例子中,只有当 num 是偶数时才会将 num 平方后的结果加入到列表中。 列表推导式还可以嵌套使用,例如: ``` matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] flattened = [num for row in matrix for num in row] print(flattened) # [1, 2, 3, 4, 5, 6, 7, 8, 9] ``` 在这个例子中,我们使用了两个 for 循环,第一个循环遍历 matrix 中的每一行,第二个循环遍历每一行中的每一个元素。 总之,Python列表推导式提供了一种简单而又清晰的方式来构建列表,能够大大提高编码效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦云澜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值