泊松分布的推导(每一步详细解释,三分钟学会)

        不知道小伙伴们在学概率论的时候有没有疑惑泊松分布的公式是怎么推导出来的,今天我们就从二项分布的基础上推一下泊松分布的公式。

不说废话,直接开始证明:

       在独立实验中,事件A在实验中出现的概率与实验的总数n有关,记为p_{n},n次实验中,事件A出现的次数记为X,X\sim B(n,p_{n})。所以就有:P(X=i)= \binom{n}{i} p^{i}_{n}(1-p_{n})^{n-i},这不就是二项分布嘛,我们记\lambda _{n}=np_{n},如果有\lim_{n \to \infty }\lambda _{n}=\lambda,那么有

P(X=i;n,p_{n})= \frac{1}{i!}\lambda ^{i}e^{-\lambda}

证明:\lim_{n \to \infty }P(X=i;n,p_{n})=\lim_{n \to \infty }\binom{n}{i}p^{i}_{n}(1-p_{n})^{n-i}

                                                        =\lim_{n \to \infty }\frac{n!}{i!(n-i)!}\frac{\lambda ^{i}_{n}}{n^{i}}(1-\frac{\lambda _{n}}{n})^{n}(1-\frac{\lambda _{n}}{n})^{-i}

这里其实就是把各个项给展开了,并且根据上述假设将   p_{n}=\frac{\lambda _{n}}{n}   换了一下,后面的二项式给分成了两项,应该不难理解吧,嗯哼,那我们接着证明

                                                       =\lim_{n \to \infty }\frac{n(n-1)\cdot \cdot \cdot (n-i+1)}{n^{i}}\frac{\lambda ^{i}_{n}}{i!}(1-\frac{\lambda _{n}}{n})^{n}(1-\frac{\lambda _{n}}{n})^{-i}

这一步我们主要是对第一项进行化简,然后再将前两项的分母换一下位置,那此时我们再将\lim_{n \to \infty }\lambda _{n}=\lambda带入,则有

                                                       =\frac{\lambda^{i}}{i!}\lim_{n \to \infty }\frac{n(n-1)\cdot \cdot \cdot (n-i+1)}{n^{i}}\frac{\lambda ^{i}}{i!}(1-\frac{\lambda }{n})^{n}(1-\frac{\lambda }{n})^{-i}

                                                       =\frac{\lambda ^{i}}{i!}\times 1\times e^{-\lambda }\times1

这里求极限我们可以看到,第一项分子分母最高次相同,所以极限为1,第二项是两个重要极限的变形,如有疑问的话可以看看高数或者数学分析的课本,第三项极限显然是1。

      会不会有小伙伴有疑问,为什么可以单独求完极限再相乘,这样是可以的啦,因为它们每项都是相乘的并且求完极限存在,所以是可以的,这个数分里面有讲哦,因为我学的数分,我不太清楚学高数的小伙伴的书里面是怎么描述的,我想应该也是有的。

那么我们就可以得到最后的结论啦

                                                          = \frac{1}{i!}\lambda ^{i}e^{-\lambda}

所以就有

                                              P(X=i;n,p_{n})= \frac{1}{i!}\lambda ^{i}e^{-\lambda}

当然,这里需要满足的是n比较大,p比较小的情况,当出现这类情况时,二项分布就可以用泊松分布近似代替。

     至于怎么实际应用,我想其他csdn的小伙伴已经讲的很清楚了,我就不班门弄斧啦。

     如有说错的地方,欢迎批评指正。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦云澜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值