【大学生数学竞赛】公式大全(补充中)

这篇博客详述了大学生数学竞赛中涉及的导数与微分知识,包括复合函数求导法则,一阶线性微分方程的解法,以及多元函数极值的求解步骤。同时,还提供了神奇的三角恒等式sin x = ± sin(x + nΠ)作为解题技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二、导数与微分

2.2 函数的求导法则

复合函数求导法则✨✨

在这里插入图片描述
2017初赛第一题3
2017初赛第二题

七、微分方程

7.4 一阶线性微分方程

齐次一阶线性微分方程
在这里插入图片描述

  • 齐次通解:在这里插入图片描述

非齐次一阶线性微分方程
在这里插入图片描述

九、多元函数微分法及其应用

9.8 多元函数的极值及其求法

### 2020年全国大学生数学建模竞赛B题穿越沙漠问题第一问解答 #### 背景概述 2020年全国大学生数学建模竞赛B题《穿越沙漠》的第一问要求玩家在已知每天天气条件下,针对地图1和地图2进行路径规划。目标是在满足各种约束条件的情况下,使最终剩余资金达到最大值。 #### 建模方法 为了实现这一目标,通常采用整数线性规划(Integer Linear Programming, ILP)模型[^2]。该模型的核心在于构建一个优化框架,其中包含以下几个部分: - **目标函数**: 将玩家的总资金最大化作为目标函数。这表示玩家需要尽可能多地保留资金,在完成穿越的同时获取最高收益。 - **决策变量**: 定义一系列决策变量用于描述玩家的行为选择。例如: - 是否经过某个特定位置; - 在某一天是否停留于矿山或村庄; - 每日购买物资的数量等。 这些变量通常是0-1型变量或者连续变量,具体取决于实际需求[^4]。 - **约束条件**: 约束条件来源于游戏规则的具体设定,主要包括但不限于以下几点: - 每天移动的距离限制; - 天气对消耗的影响; - 村庄和矿山的功能作用; - 初始资金数量及其使用范围。 基于上述要素,可以将问题转化为标准形式的ILP模型并借助软件工具求解。 #### 求解过程 对于本题而言,推荐使用LINGO或其他类似的优化求解器来进行数值计算。以下是具体的实施步骤说明: 1. 数据准备阶段:提取`Result.xls`文件中的相关参数信息,包括地形分布、每日天气状况以及其他辅助资料。 2. 构造模型方程组:依据前述理论基础编写完整的数学表达式集合,确保覆盖所有必要逻辑关系。 3. 输入程序执行环境:将整理好的公式导入至选定平台内部,并调整初始配置直至运行正常为止。 4. 输出结果解读:得到最优方案后仔细核查其合理性并与预期效果对比验证准确性。 #### 示例代码片段 下面展示一段简单的Python脚本来模拟部分功能操作流程: ```python import pandas as pd # 加载数据表 data = pd.read_excel('Result.xls') def calculate_optimal_path(weather_conditions, map_layout): """根据天气条件和地图布局计算最佳路径""" # 初始化变量... # 动态规划算法主体... return optimal_solution if __name__ == "__main__": weather_data = data['Weather'][:30].tolist() layout_map_1 = data[['X', 'Y']].values result = calculate_optimal_path(weather_data, layout_map_1) print(f"Optimal Path on Map 1: {result}") ``` 此段伪代码仅作示意用途,请读者自行补充完善细节部分内容以便适应实际情况下的复杂场景需求。 --- #### 结果解释 通过以上方式可以获得关于如何安排行动顺序使得结束时持有金额最高的精确指导方针。同时也可以绘制相应的轨迹图形便于直观理解整个进程发展脉络走向趋势变化规律特征等方面的内容呈现出来供进一步探讨研究之用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值