K近邻k-Nearest Neighbor(KNN)算法的理解

本文介绍了K近邻(K-Nearest Neighbor,KNN)算法的基本概念,包括算法的优势和不足,并讨论了在实际应用中需要注意的问题。此外,还详细阐述了如何使用Python的scikit-learn库实现KNN算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、KNN算法概述

KNN作为一种有监督分类算法,是最简单的机器学习算法之一,顾名思义,其算法主体思想就是根据距离相近的邻居类别,来判定自己的所属类别。算法的前提是需要有一个已被标记类别的训练数据集,具体的计算步骤分为一下三步:
1、计算测试对象与训练集中所有对象的距离,可以是欧式距离、余弦距离等,比较常用的是较为简单的欧式距离;
2、找出上步计算的距离中最近的K个对象,作为测试对象的邻居;
3、找出K个对象中出现频率最高的对象,其所属的类别就是该测试对象所属的类别。

二、算法优缺点

1、优点

思想简单,易于理解,易于实现,无需估计参数,无需训练;
适合对稀有事物进行分类;
特别适合于多分类问题。

2、缺点

懒惰算法,进行分类时计算量大,要扫描全部训练样本计算距离,内存开销大,评分慢;
当样本不平衡时,如其中一个类别的样本较大,可能会导致对新样本计算近邻时,大容量样本占大多数,影响分类效果;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值