检测射线与矩形相交

最近在看recast&detour源码的时候有遇到许多数学上的算法问题,特此记录,以便以后查看

Theory:

看 Inside-y-slab(光线在 y=ymin 和 y=ymax 的那段) 和

Inside-x-slab(光线在 x=xmin 和 x=xmax 的那段)有没有重叠。

如果有重叠部分,那么光线与包围盒相交。

如何判断有没有重叠部分?
假设已知射线的起点为Orig,射线的方向为 Dir ,那么射线方程表示成:
P = Orig + t*Dir;
通过与直线方程 x=xmin x=xmax y=ymin y=ymax 联立可以求得 参数t值
假设与 x = k 相交交点参数为 t1 t2, t1 < t2
与y = b 相交交点参数为 t3 t4,t3 < t4
那么判断是否重叠,就转换成两个区间范围是否有重复,
令tmin = max(t1,t3), tmax = min(t2, t4) ,那么当 tmin > tmax 的时候就是不重叠。
当光线是射线的时候,
tmin 初始为 0,tmin = max(t1,t3,0)
当光线是线段的时候,
tmin 初始为0, tmin = max(t1, t3, 0)
tmax 初始为1, tmax = min(t2, t4, 1)


Implement:

/**************************************************
@brief: 检测线段与矩形相交
@sp   : 起点
@sq   : 终点
@amin amax : AABB矩形包围盒
**************************************************/
static bool isectSegAABB(const float* sp, const float* sq,
                         const float* amin, const float* amax,
                         float& tmin, float& tmax)
{
    static const float EPS = 1e-6f;
    
    float d[3];
    d[0] = sq[0] - sp[0];
    d[1] = sq[1] - sp[1];
    d[2] = sq[2] - sp[2];
    tmin = 0.0;
    tmax = 1.0f;
    
    for (int i = 0; i < 3; i++)
    {
        if (fabsf(d[i]) < EPS) 
        {//判断是否平行
            if (sp[i] < amin[i] || sp[i] > amax[i])
                return false;
        }
        else
        {
            // 根据射线方程 P = sp + t*d 与矩形的方程相交, 求出三个区间[tmin,tmax]   
            // 如果是二维坐标系,则只有两个区间
            const float ood = 1.0f / d[i];
            float t1 = (amin[i] - sp[i]) * ood;
            float t2 = (amax[i] - sp[i]) * ood;
            if (t1 > t2) { float tmp = t1; t1 = t2; t2 = tmp; }
            if (t1 > tmin) tmin = t1;
            if (t2 < tmax) tmax = t2;
            // 如果区间重叠, 则相交
            if (tmin > tmax) return false;
        }
    }
    
    return true;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值