多分类学习

本文探讨了多分类学习的基本思想,包括一对一(OvO)、一对余(OvR)和多对多(MvM)三种拆分策略。OvO策略涉及的分类器数量最多,但训练时间可能更短;OvR策略存储和测试成本较低,但处理多正类情况较复杂;MvM策略则适用于特定场景。在实际应用中,需根据类别数量和资源限制选择合适的策略。
摘要由CSDN通过智能技术生成

1.基本思想:
考虑到N个类别C1,C2,…,Cn,
多分类学习的基本思路:拆解法,即将多分类任务拆解为若干个二分类任务求解。
具体讲,先对问题进行拆分,然后为拆出的每个二分类任务训练一个分类器。在测试时,对这些分类器的预测结果进行集成以获得最终的多分类结果。

2.拆分策略
给定数据集D={(x1,y1),(x2,y2),…,(xm,ym)},yi属于{C1,C2,…,CN}:
1)一对一(One vs One,OvO):
OvO将这N个类别两两配对,产生N(N-1)/2个二分类任务。

例如:OvO将类别Ci和Cj训练为一个分类器,该分类器把D中的Ci类样例作为正例,Cj类样例作为反例。

在测试阶段,新样本将同时提交给所有分类器,得到N(N-1)/2个分类结果,通过投票产生最终结果,即把被预测得最多的类别作为最终分类结果。

2)一对其余(One vs Rest,OvR):
OvR每次将一个类的样例作为正例、所有其他类的样例作为反例来训练N个分类器。

在测试时,若只有一个分类器预测为正类,则对应的类别标记作为最终分类结果。若有多个分类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值