1.基本思想:
考虑到N个类别C1,C2,…,Cn,
多分类学习的基本思路:拆解法,即将多分类任务拆解为若干个二分类任务求解。
具体讲,先对问题进行拆分,然后为拆出的每个二分类任务训练一个分类器。在测试时,对这些分类器的预测结果进行集成以获得最终的多分类结果。
2.拆分策略
给定数据集D={(x1,y1),(x2,y2),…,(xm,ym)},yi属于{C1,C2,…,CN}:
1)一对一(One vs One,OvO):
OvO将这N个类别两两配对,产生N(N-1)/2个二分类任务。
例如:OvO将类别Ci和Cj训练为一个分类器,该分类器把D中的Ci类样例作为正例,Cj类样例作为反例。
在测试阶段,新样本将同时提交给所有分类器,得到N(N-1)/2个分类结果,通过投票产生最终结果,即把被预测得最多的类别作为最终分类结果。
2)一对其余(One vs Rest,OvR):
OvR每次将一个类的样例作为正例、所有其他类的样例作为反例来训练N个分类器。
在测试时,若只有一个分类器预测为正类,则对应的类别标记作为最终分类结果。若有多个分类