斯坦纳树问题是组合优化学科中的一个问题。将指定点集合中的所有点连通,且边权总和最小的生成树称为最小斯坦纳树(Minimal Steiner Tree),其实最小生成树是最小斯坦纳树的一种特殊情况。而斯坦纳树可以理解为使得指定集合中的点连通的树,但不一定最小。
2. 如何求解最小斯坦纳树?
可以用DP求解,dp[i][state]表示以i为根,指定集合中的点的连通状态为state的生成树的最小总权值。
转移方程有两重:
第一重,先通过连通状态的子集进行转移。
dp[i][state]=min{ dp[i][subset1]+dp[i][subset2] }
枚举子集的技巧可以用 for(sub=(state-1)&state;sub;sub=(sub-1)&state)。
第二重,在当前枚举的连通状态下,对该连通状态进行松弛操作。
dp[i][state]=min{ dp[i][state], dp[j][state]+e[i][j] }
为什么只需对该连通状态进行松弛?因为更后面的连通状态会由先前的连通状态通过第一重转移得到,所以无需对别的连通状态松弛。松弛操作用SPFA即可。
复杂度 O(n*3^k+cE*2^k)
c为SPFA复杂度中的常数,E为边的数量,但几乎达不到全部边的数量,甚至非常小。3^k来自于子集的转移sum{C(i,n)*2^i} (1<=i<=n),用二项式展开求一下和。
模版:
- /*
- * Steiner Tree:求,使得指定K个点连通的生成树的最小总权值
- * st[i] 表示顶点i的标记值,如果i是指定集合内第m(0<=m<K)个点,则st[i]=1<<m
- * endSt=1<<K
- * dptree[i][state] 表示以i为根,连通状态为state的生成树值
- */
- #define CLR(x,a) memset(x,a,sizeof(x))
- int dptree[N][1<<K],st[N],endSt;
- bool vis[N][1<<K];
- queue<int> que;
- int input()
- {
- /*
- * 输入,并且返回指定集合元素个数K
- * 因为有时候元素个数需要通过输入数据处理出来,所以单独开个输入函数。
- */
- }
- void initSteinerTree()
- {
- CLR(dptree,-1);
- CLR(st,0);
- for(int i=1;i<=n;i++) CLR(vis[i],0);
- endSt=1<<input();
- for(int i=1;i<=n;i++)
- dptree[i][st[i]]=0;
- }
- void update(int &a,int x)
- {
- a=(a>x || a==-1)? x : a;
- }
- void SPFA(int state)
- {
- while(!que.empty()){
- int u=que.front();
- que.pop();
- vis[u][state]=false;
- for(int i=p[u];i!=-1;i=e[i].next){
- int v=e[i].vid;
- if(dptree[v][st[v]|state]==-1 ||
- dptree[v][st[v]|state]>dptree[u][state]+e[i].w){
- dptree[v][st[v]|state]=dptree[u][state]+e[i].w;
- if(st[v]|state!=state || vis[v][state])
- continue; //只更新当前连通状态
- vis[v][state]=true;
- que.push(v);
- }
- }
- }
- }
- void steinerTree()
- {
- for(int j=1;j<endSt;j++){
- for(int i=1;i<=n;i++){
- if(st[i] && (st[i]&j)==0) continue;
- for(int sub=(j-1)&j;sub;sub=(sub-1)&j){
- int x=st[i]|sub,y=st[i]|(j-sub);
- if(dptree[i][x]!=-1 && dptree[i][y]!=-1)
- update(dptree[i][j],dptree[i][x]+dptree[i][y]);
- }
- if(dptree[i][j]!=-1)
- que.push(i),vis[i][j]=true;
- }
- SPFA(j);
- }
- }
也有用Floyd求的,但是个人认为还是SPFA效率稳定。Floyd的话,数据达到三五百就可能T了。