斯坦纳树(Steiner Tree)

本文深入解析了斯坦纳树问题的定义与特性,着重阐述了最小斯坦纳树的概念,并详细介绍了使用动态规划(DP)求解最小斯坦纳树的算法过程。该算法涉及复杂的子集转移与松弛操作,旨在优化连接指定集合中所有点的生成树,以实现最小总权重。文中还提供了算法的C++模板代码,以便于读者理解和实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 什么是 斯坦纳树?

       斯坦纳树问题是组合优化学科中的一个问题。将指定点集合中的所有点连通,且边权总和最小的生成树称为最小斯坦纳树(Minimal Steiner Tree),其实最小生成树是最小斯坦纳树的一种特殊情况。而斯坦纳树可以理解为使得指定集合中的点连通的树,但不一定最小。

2. 如何求解最小斯坦纳树?

      可以用DP求解,dp[i][state]表示以i为根,指定集合中的点的连通状态为state的生成树的最小总权值。

      转移方程有两重:

      第一重,先通过连通状态的子集进行转移。

      dp[i][state]=min{ dp[i][subset1]+dp[i][subset2] } 

      枚举子集的技巧可以用 for(sub=(state-1)&state;sub;sub=(sub-1)&state)。


      第二重,在当前枚举的连通状态下,对该连通状态进行松弛操作。

      dp[i][state]=min{ dp[i][state], dp[j][state]+e[i][j] }

      为什么只需对该连通状态进行松弛?因为更后面的连通状态会由先前的连通状态通过第一重转移得到,所以无需对别的连通状态松弛。松弛操作用SPFA即可。


      复杂度 O(n*3^k+cE*2^k)

      c为SPFA复杂度中的常数,E为边的数量,但几乎达不到全部边的数量,甚至非常小。3^k来自于子集的转移sum{C(i,n)*2^i} (1<=i<=n),用二项式展开求一下和。


模版:

[cpp]  view plain copy
  1. /* 
  2.  *  Steiner Tree:求,使得指定K个点连通的生成树的最小总权值 
  3.  *  st[i] 表示顶点i的标记值,如果i是指定集合内第m(0<=m<K)个点,则st[i]=1<<m  
  4.  *  endSt=1<<K 
  5.  *  dptree[i][state] 表示以i为根,连通状态为state的生成树值 
  6.  */  
  7. #define CLR(x,a) memset(x,a,sizeof(x))  
  8.   
  9. int dptree[N][1<<K],st[N],endSt;  
  10. bool vis[N][1<<K];  
  11. queue<int> que;  
  12.   
  13. int input()  
  14. {  
  15.    /* 
  16.     *    输入,并且返回指定集合元素个数K 
  17.     *    因为有时候元素个数需要通过输入数据处理出来,所以单独开个输入函数。 
  18.     */  
  19. }  
  20.   
  21. void initSteinerTree()  
  22. {  
  23.     CLR(dptree,-1);  
  24.     CLR(st,0);  
  25.     for(int i=1;i<=n;i++) CLR(vis[i],0);  
  26.     endSt=1<<input();  
  27.     for(int i=1;i<=n;i++)  
  28.         dptree[i][st[i]]=0;  
  29. }  
  30.   
  31. void update(int &a,int x)  
  32. {  
  33.     a=(a>x || a==-1)? x : a;  
  34. }  
  35.   
  36. void SPFA(int state)  
  37. {  
  38.     while(!que.empty()){  
  39.         int u=que.front();  
  40.         que.pop();  
  41.         vis[u][state]=false;  
  42.         for(int i=p[u];i!=-1;i=e[i].next){  
  43.             int v=e[i].vid;  
  44.             if(dptree[v][st[v]|state]==-1 ||   
  45.                 dptree[v][st[v]|state]>dptree[u][state]+e[i].w){  
  46.   
  47.                 dptree[v][st[v]|state]=dptree[u][state]+e[i].w;  
  48.                 if(st[v]|state!=state || vis[v][state])   
  49.                     continue//只更新当前连通状态  
  50.                 vis[v][state]=true;  
  51.                 que.push(v);  
  52.             }  
  53.         }  
  54.     }  
  55. }  
  56.   
  57. void steinerTree()  
  58. {  
  59.     for(int j=1;j<endSt;j++){  
  60.         for(int i=1;i<=n;i++){  
  61.             if(st[i] && (st[i]&j)==0) continue;  
  62.             for(int sub=(j-1)&j;sub;sub=(sub-1)&j){  
  63.                 int x=st[i]|sub,y=st[i]|(j-sub);  
  64.                 if(dptree[i][x]!=-1 && dptree[i][y]!=-1)  
  65.                     update(dptree[i][j],dptree[i][x]+dptree[i][y]);  
  66.             }  
  67.             if(dptree[i][j]!=-1)   
  68.                 que.push(i),vis[i][j]=true;  
  69.         }  
  70.         SPFA(j);  
  71.     }  
  72. }  

也有用Floyd求的,但是个人认为还是SPFA效率稳定。Floyd的话,数据达到三五百就可能T了。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值