ARCH(自回归条件异方差)模型是一种用于时间序列数据分析的统计模型,尤其适用于金融数据分析中的波动性建模。由罗伯特·英格兰(Robert Engle)在1982年提出,ARCH模型专注于捕捉和建模金融市场中常见的波动性聚集现象,即高波动期和低波动期会交替出现。
以下是ARCH模型的主要特点和应用:
1. 基本概念
- 异方差性:传统的时间序列模型(如ARMA模型)假设误差项具有常数方差,而ARCH模
ARCH(自回归条件异方差)模型是一种用于时间序列数据分析的统计模型,尤其适用于金融数据分析中的波动性建模。由罗伯特·英格兰(Robert Engle)在1982年提出,ARCH模型专注于捕捉和建模金融市场中常见的波动性聚集现象,即高波动期和低波动期会交替出现。
以下是ARCH模型的主要特点和应用: