有限差分法(Finite Difference Method, FDM)是一种重要的数值分析技术,广泛应用于金融工程、衍生品定价、风险管理等领域。有限差分法主要用于求解偏微分方程(PDE),特别是在金融数学中描述衍生品定价模型时,会涉及到如Black-Scholes方程等PDE的求解。
有限差分法的基本概念
有限差分法通过将连续的偏微分方程转化为离散的差分方程,从而使得原本难以解析求解的PDE可以通过数值方法来求解。它利用网格(grid)将计算区域离散化,并在网格节点上近似表示导数,从而构建出差分方程。
有限差分法的步骤
网格划分:
将时间和资产价格区间划分为离散的网格点。例如,可以将时间区间分为t0,