量化面试:什么是有限差分法?

有限差分法(Finite Difference Method, FDM)是一种重要的数值分析技术,广泛应用于金融工程、衍生品定价、风险管理等领域。有限差分法主要用于求解偏微分方程(PDE),特别是在金融数学中描述衍生品定价模型时,会涉及到如Black-Scholes方程等PDE的求解。

有限差分法的基本概念

有限差分法通过将连续的偏微分方程转化为离散的差分方程,从而使得原本难以解析求解的PDE可以通过数值方法来求解。它利用网格(grid)将计算区域离散化,并在网格节点上近似表示导数,从而构建出差分方程。

有限差分法的步骤

网格划分

将时间和资产价格区间划分为离散的网格点。例如,可以将时间区间分为t0,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值