DFS 小结

DFS从实现角度看有两种方法:

1. 迭代写法:自己实现一个stack,类似bfs的写法,只不过将queue改成stack而已

2. 递归写法:基本框架

dfs()

{

    1.   退出点,例如到达目的点

    2.   剪枝点,优化点,当前耗费已经大于之前得到的Answer

    3.  循环体,决策项,例如上下左右等

}

3. 有时候需要记录最优结果对应的决策路径,这时候需要自己实现一个stack。

调用dfs前:mstack[top++]=firstdata;

dfs的loop体mstack[top++]=currentdata;

dfs后top--;

dfs的退出点可以打印决策路径,即0-top的stack内容

 

DFS从题型上划分,有两种类型:

1. dfs遍历题:即遍历完所有点即可,可以用bfs代替。 visited不需要置回去。

    时间复杂度比较小,每个点最多遍历一次即可。

   此外bfs效率稍微更高一点,因为dfs的递归实现有多次函数调用,开销略大。

2. dfs全路径题目:即走完所有的路径,从而可以得到最小的耗费等。 visited需要置回去,其余全局性变量也需要回滚,因为当前路径不能影响其他路径。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值