DFS从实现角度看有两种方法:
1. 迭代写法:自己实现一个stack,类似bfs的写法,只不过将queue改成stack而已
2. 递归写法:基本框架
dfs()
{
1. 退出点,例如到达目的点
2. 剪枝点,优化点,当前耗费已经大于之前得到的Answer
3. 循环体,决策项,例如上下左右等
}
3. 有时候需要记录最优结果对应的决策路径,这时候需要自己实现一个stack。
调用dfs前:mstack[top++]=firstdata;
dfs的loop体mstack[top++]=currentdata;
dfs后top--;
dfs的退出点可以打印决策路径,即0-top的stack内容
DFS从题型上划分,有两种类型:
1. dfs遍历题:即遍历完所有点即可,可以用bfs代替。 visited不需要置回去。
时间复杂度比较小,每个点最多遍历一次即可。
此外bfs效率稍微更高一点,因为dfs的递归实现有多次函数调用,开销略大。
2. dfs全路径题目:即走完所有的路径,从而可以得到最小的耗费等。 visited需要置回去,其余全局性变量也需要回滚,因为当前路径不能影响其他路径。