知识导航

顶会论文

ACL: https://acl2017.wordpress.com/2017/04/05/accepted-papers-and-demonstrations/

NIPS:https://nips.cc/Conferences/2017/Schedule?type=Poster

ICML:https://icml.cc/Conferences/2017/Schedule?type=Poster

https://web.stanford.edu/class/cs20si/syllabus.html  CS 20: Tensorflow for Deep Learning Research

 

【NLP】
http://blog.csdn.net/u012560212/article/details/53405338 LabelEncoder
http://blog.csdn.net/u013709332/article/details/48436663 机器学习那些事——文本挖掘中的特征提取

http://blog.csdn.net/lovebyz/article/details/77712003 Keras---text.Tokenizer:文本与序列预处理

https://zhuanlan.zhihu.com/p/28054589 ★★★★★ 完全图解RNN、RNN变体、Seq2Seq、Attention机制

http://blog.csdn.net/mylove0414/article/details/61616617 大白话讲解word2vec到底在做些什么

https://cloud.tencent.com/developer/article/1005771 关于 word2vec 我有话要说

https://www.zhihu.com/question/44832436/answer/266068967  ★★★★★ word2vec是如何得到词向量的?

http://blog.csdn.net/layumi1993/article/details/72866235 ★★★★★ Word2Vec教程 - Skip-Gram模型

https://www.leiphone.com/news/201706/QprrvzsrZCl4S2lw.html 一文详解 Word2vec 之 Skip-Gram 模型(实现篇)

https://www.cnblogs.com/Determined22/p/5804455.html word2vec(CBOW/Skip-gram)

https://blog.csdn.net/layumi1993/article/details/72868399 ★★★★★ Word2Vec教程(2)- Negative Sampling
https://blog.csdn.net/ns_code/article/details/19174553 【数据结构与算法】Huffman树&&Huffman编码(附完整源码)
https://blog.csdn.net/philosophyatmath/article/details/52354413 python 环境下gensim中的word2vec的使用笔记
https://blog.csdn.net/accumulate_zhang/article/details/53324165
★★★★★ 一文读懂BP神经网络

https://blog.csdn.net/roslei/article/details/61912618 ★★★★★ 推荐给初学LSTM或者懂个大概却不完全懂的人

http://blog.csdn.net/panghaomingme/article/details/55210491 NLTK使用

http://blog.csdn.net/zzulp/article/details/77150129 NLTK学习之一:简单文本分析
http://blog.csdn.net/zzulp/article/details/77164988 NLTK学习之二:建构词性标注器  
http://blog.csdn.net/zzulp/article/details/77336253 NLTK学习之三:文本分类与构建基于分类的词性标注器  
http://blog.csdn.net/zzulp/article/details/77414113 NLTK学习之四:文本信息抽取  
http://blog.csdn.net/zzulp/article/details/76589044 Keras学习之四:用RNN进行评论好恶预测  

https://blog.csdn.net/baimafujinji/article/details/51285082 机器学习中的隐马尔科夫模型(HMM)详解
http://hmmlearn.readthedocs.io/en/latest/    hmmlearn
http://www.cnblogs.com/pinard/p/6945257.html   HMM

https://blog.csdn.net/yutianzuijin/article/details/33292841 基于隐马尔可夫模型的有监督词性标注
https://blog.csdn.net/ztf312/article/details/50982529 机器学习:HMM隐马尔可夫模型用于中文分词

https://blog.csdn.net/orlandowww/article/details/52706135 ★★★★★ 中文分词的python实现-基于HMM算法

https://blog.csdn.net/liujianfei526/article/details/50640176 中文分词之HMM模型详解

https://www.cnblogs.com/pinard/p/7001397.html 用hmmlearn学习隐马尔科夫模型HMM

http://sklearn-crfsuite.readthedocs.io/en/latest/?badge=latest      sklearn-crfsuite

https://mp.weixin.qq.com/s/GXbFxlExDtjtQe-OPwfokA ★★★★★ 一文轻松搞懂-条件随机场CRF

https://www.cnblogs.com/littleseven/p/6481315.html 对crf++的template的理解 ©seven_clear - seven_clear - 博客园
https://blog.csdn.net/chlele0105/article/details/14897761  条件随机场(Conditional random fields) - CSDN博客

https://www.cnblogs.com/DjangoBlog/p/6814398.html 用条件随机场CRF进行字标注中文分词(Python实现) - Django's blog - 博客园

http://www.52nlp.cn/%e5%88%9d%e5%ad%a6%e8%80%85%e6%8a%a5%e9%81%933-crf-%e4%b8%ad%e6%96%87%e5%88%86%e8%af%8d%e8%a7%a3%e7%a0%81%e8%bf%87%e7%a8%8b%e7%90%86%e8%a7%a3 初学者报道(3) CRF 中文分词解码过程理解  我爱自然语言处理

https://blog.csdn.net/u013041398/article/details/52473994 基于TextRank的关键词、短语、摘要提取
https://blog.csdn.net/xiewenbo/article/details/46671587 ★★★★★ 使用TextRank算法为文本生成关键字和摘要

https://blog.csdn.net/eliza1130/article/details/45039641 bigram分词

https://blog.csdn.net/ahmanz/article/details/51273500 N-Gram语言模型
https://blog.csdn.net/thealgorithmart/article/details/6876871 中文分词预处理之N最短路径法小结(转)

https://mp.weixin.qq.com/s/CdqUNqDSnk9WWolbhAlT9Q 机器学习与深度学习面试问题总结

https://mp.weixin.qq.com/s/uP0R1JGjP9U7cFVouOUGbg 关键词抽取TextRank

https://mp.weixin.qq.com/s/POG3p6KwrNDgNiubGcBUmw  ★★★★★ 详解循环神经网络RNN(理论篇)
https://mp.weixin.qq.com/s/3cpcwyORUA3g_XhDnyVQ4A  ★★★★★ 详解循环神经网络RNN(实践篇
https://mp.weixin.qq.com/s/cfwKezdOaO3kD6JfrbZTLg  ★★★★★【干货】GRU神经网络

https://www.cnblogs.com/CheeseZH/p/5768389.html 依存句法分析与语义依存分析的区别 - ZH奶酪 - 博客园
http://www.hankcs.com/nlp/to-achieve-a-simple-generative-dependency-parsing.html 生成式依存句法分析器的简单实现-码农场
http://www.cnblogs.com/hx78/p/7309535.html NLP之最短路径分词(五) - hx78 - 博客园

http://www.cnblogs.com/zhenyulu/articles/669795.html  SharpICTCLAS分词系统简介(4)NShortPath-1 - 吕震宇 - 博客园
http://www.hankcs.com/nlp/hmm-and-segmentation-tagging-named-entity-recognition.html HMM与分词、词性标注、命名实体识别-码农场
http://www.coderjie.com/blog/759cd56a72d911e7841d00163e0c0e36 Python NLTK学习11(命名实体识别和关系抽取) - 小杰Code
https://www.cnblogs.com/undercurrent/p/4754944.html Python自然语言处理学习笔记之信息提取步骤&分块(chunking) - cs_暗流 - 博客园
http://coderskychen.cn/2016/12/28/%E3%80%90%E5%B9%B2%E8%B4%A7%E5%88%86%E4%BA%AB%E3%80%912016CCF%E5%A4%A7%E6%95%B0%E6%8D%AE%E4%B8%8E%E8%AE%A1%E7%AE%97%E6%99%BA%E8%83%BD%E5%A4%A7%E8%B5%9B-%E6%90%9C%E7%8B%97%E7%94%A8%E6%88%B7%E7%94%BB%E5%83%8F%E6%8C%96%E6%8E%98/  ★★★★★ 第五名分享-搜狗用户画像挖掘-2016CCF大数据与计算智能大赛  SkyChen的博客

 

【聊天机器人】
http://www.sohu.com/a/219168211_633698 八大步骤,用机器学习解决90%的NLP问题
http://www.sohu.com/a/197404530_470008 深度学习在 NLP 上的七大应用
https://www.iyiou.com/p/47188/ 周明:从机器翻译、聊天机器人和阅读理解三方向在NLP领域的发展

https://baijiahao.baidu.com/s?id=1564932384720383&wfr=spider&for=pc 专访阿里iDST孙健博士:做智能人机对话如何在别人的哀嚎中看到生机?
https://www.jianshu.com/p/cde686e81b15 了解人机对话—聊天、问答、多轮对话和推荐 - 简书
http://www.dataguru.cn/article-11629-1.html 美团如何用NLP完成5大应用场景 - 自然语言处理-炼数成金-Dataguru专业数据分析社区
http://www.360doc.com/content/17/1123/23/48169514_706594601.shtml AI小白也能开发自己的聊天机器人?这个教程请拿走
http://blog.sina.com.cn/s/blog_4caedc7a0102wo52.html 如何在NLP领域第一次做成一件事_微软亚洲研究院_新浪博客
http://blog.geohey.com/qian-tan-liao-tian-ji-qi-ren-kai-fa-si-lu/ 浅谈聊天机器人开发思路
http://www.sohu.com/a/127531546_488164 未来已来!阿里小蜜AI技术揭秘_搜狐科技_搜狐网

https://baijiahao.baidu.com/s?id=1586091166801242811&wfr=spider&for=pc 聊天机器人(Chatbot)开发:自然语言处理(NLP)技术栈

http://blog.csdn.net/ppp8300885/article/details/74905828 ★★★★★ RNN聊天机器人与Beam Search [Tensorflow Seq2Seq]
http://blog.csdn.net/qq_31584157/article/details/77709454 机器翻译自动评估-BLEU算法详解

https://blog.csdn.net/malefactor/article/details/51901115 使用深度学习打造智能聊天机器人
https://blog.csdn.net/u012052268/article/details/78035272 自然语言处理 怎么获得数据集 中文语料集?
https://blog.csdn.net/weixin_36541072/article/details/78434987 Sequence to Sequence 实现机器翻译(keras demo)
https://blog.csdn.net/irving_zhang/article/details/78889364 seq2seq模型详解

https://blog.csdn.net/irving_zhang/article/details/79088143 实现基于seq2seq的聊天机器人

http://www.zmonster.me/2016/05/29/sequence_to_sequence_with_keras.html   使用 Keras 实现简单的 Sequence to Sequence 模型 · ZMonster's Blog

https://zhuanlan.zhihu.com/p/27608348  从Encoder到Decoder实现Seq2Seq模型

http://blog.csdn.net/xbinworld/article/details/54605408 深度学习方法(八):自然语言处理中的Encoder-Decoder模型,基本Sequence to Sequence模型
http://blog.csdn.net/xbinworld/article/details/54607525 深度学习方法(九):自然语言处理中的Attention Model注意力模型
http://blog.csdn.net/BVL10101111/article/details/78470716 Attention Model(mechanism) 的 套路

https://blog.csdn.net/brandon2015/article/details/73920783 使用深度学习打造智能聊天机器人

https://www.sohu.com/a/157050254_642762 谷歌神经网络机器翻译NMT
https://www.flashgene.com/archives/100.html tensorflow nmt的数据预处理过程
https://www.v2ex.com/t/394534 TensorFlow LSTM 注意力机制图解
https://ask.hellobi.com/blog/wenwen/11367 ★★★★★ 使用Seq2Seq+attention实现简单的Chatbot
https://www.leiphone.com/news/201801/vACDb4p98FqcmJVA.html ★★★★★ 北邮张庆恒:如何基于 rasa 搭建一个中文对话系统
https://www.cnblogs.com/qcloud1001/p/8391212.html 使用Botkit和Rasa NLU构建智能聊天机器人

https://www.jianshu.com/u/0a00a0ea2759  基于rasa的对话系统搭建(上)

https://www.jianshu.com/p/515385a7c7f0 基于rasa的对话系统搭建(下)

http://rowl1ng.com/tech/chatbot.html 基于Rasa_NLU的微信chatbot
http://www.bugingcode.com/blog/ChatterBot_Dialogue_process.html ChatterBot聊天机器人呢结构(五):ChatterBot对话流程

http://blog.topspeedsnail.com/  TensorFlow练习26: AI操盘手

https://zhuanlan.zhihu.com/p/32455898  深度学习对话系统实战篇--简单chatbot代码实现

 

【基础】

http://blog.csdn.net/u011583927/article/details/45934455 如何理解离散傅里叶变换(一)实数形式傅里叶变换
https://www.zhihu.com/question/20460630/answer/26279399 傅里叶变换有哪些具体的应用
https://www.zhihu.com/question/20460630/answer/105904075 傅里叶变换有哪些具体的应用
https://zhuanlan.zhihu.com/p/19763358 傅里叶分析之掐死教程
https://zhuanlan.zhihu.com/p/19759362 如果看了这篇文章你还不懂傅里叶变换
https://www.zhihu.com/question/30242595/answer/70013252 傅里叶变换的意义是什么
https://www.zhihu.com/question/30242595/answer/174579992 傅里叶变换的意义是什么
https://www.zhihu.com/question/21314374/answer/23027316 如何通俗地解释什么是离散傅里叶变换
http://blog.csdn.net/xbinworld/article/details/79056362 深度学习/机器学习入门基础数学知识整理(一):线性代数基础,矩阵,范数等
http://blog.csdn.net/zouxy09/article/details/8537620 从最大似然到EM算法浅解
https://www.zhihu.com/question/27976634/answer/39132183 怎么通俗易懂地解释EM算法并且举个例子
http://blog.csdn.net/xbinworld/article/details/65660665 三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法
http://blog.csdn.net/fengniaokill/article/details/50825273 稀疏——字典学习
http://blog.csdn.net/ljh0302/article/details/50884303 DTW算法的原理实现

 

【传统机器学习】

【总结】

http://blog.csdn.net/zouxy09/article/details/8102252 机器学习知识点学习
http://blog.csdn.net/baidu_35231778/article/details/52221400 ★★★★★ 机器学习总结
http://blog.csdn.net/yzqzoom/article/details/52081734 看完《机器学习》的总结与心得
https://www.cnblogs.com/subconscious/p/4107357.html 计算机的潜意识
http://blog.csdn.net/dark_scope/article/details/25485893 理解机器学习算法的一点心得
http://blog.csdn.net/u010692239/article/details/14043883 Machine Learning —— By Andrew Ng(机器学习 听后自己做的笔记 记录重点内容)
http://blog.csdn.net/u010692239/article/details/52372306 机器学习实践中的 7 种常见错误
http://blog.csdn.net/danameng/article/details/25540509 Machine Learning(Andrew)Week8(下)
http://blog.csdn.net/u012050154/article/details/55106731 常用机器学习算法总结
http://blog.csdn.net/liangzhaoyang1/article/details/51463028 机器学习常见算法总结(面试用)
http://blog.csdn.net/xbmatrix/article/details/66477594 机器学习中常用算法总结
http://blog.csdn.net/lc013/article/details/56481016 机器学习算法总结--提升方法

https://www.zhihu.com/question/26726794/answer/151282052 ★★★★★ 各种机器学习的应用场景分别是什么?例如,k近邻,贝叶斯,决策树,svm,逻辑斯蒂回归和最大熵模型

【tricks】

http://blog.csdn.net/china1000/article/details/51176654 机器学习(五)--- FTRL一路走来,从LR -> SGD -> TG -> FOBOS ->  RDA -> FTRL
http://blog.csdn.net/zouxy09/article/details/8537872 浅说机器学习中“迭代法”
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0、L1与L2范数
http://blog.csdn.net/jinping_shi/article/details/52433975 机器学习中正则化项L1和L2的直观理解

https://www.zhihu.com/question/23536142/answer/90135994 LR正则化与数据先验分布的关系

http://blog.csdn.net/cherdw/article/details/54986863 Sklearn-CrossValidation交叉验证
http://blog.csdn.net/aliceyangxi1987/article/details/73598857 用学习曲线 learning curve 来判别过拟合问题
http://blog.csdn.net/chen_shiqiang/article/details/77711726 Scale(标准化)和Normalization(正则化) 区别

【梯度下降】

http://blog.csdn.net/a819825294/article/details/52172463 梯度下降、牛顿法、拟牛顿法
https://www.zhihu.com/question/53770538/answer/151932430 线性回归问题,在使用梯度下降法进行求解时,能保证收敛到全局最优解吗?为什么
http://blog.csdn.net/uestc_c2_403/article/details/74910107 三种梯度下降的方式:批量梯度下降、小批量梯度下降、随机梯度下降
http://blog.csdn.net/yinruiyang94/article/details/77944338 简述动量Momentum梯度下降
https://www.cnblogs.com/louyihang-loves-baiyan/p/5136447.html 梯度下降、随机梯度下降和批量梯度下降
http://blog.csdn.net/u012223913/article/details/78432412 【deeplearning.ai笔记第二课】2.2 优化算法(动量梯度下降,RMSprop,adam)
http://blog.csdn.net/xmu_jupiter/article/details/47402497 ★★★★★ 机器学习中梯度下降法和牛顿法的比较
http://blog.csdn.net/u014688145/article/details/53688585 算法细节系列(3):梯度下降法,牛顿法,拟牛顿法

http://blog.csdn.net/u013912596/article/details/43416943 ★★★★★ 模拟退火--较容易理解的一篇讲解

https://www.cnblogs.com/focusonepoint/p/6394339.html  梯度下降算法以及其Python实现
https://www.jianshu.com/p/9bf3017e2487 ★★★★★ 梯度下降算法以及其Python实现 - 简书

【树模型】

http://blog.csdn.net/u010692239/article/details/52595705 ★★★★★ 逻辑回归 vs 决策树 vs 支持向量机(I)

http://blog.csdn.net/u010692239/article/details/52595723 ★★★★★ 逻辑回归 vs 决策树 vs 支持向量机(II)

http://blog.csdn.net/zjsghww/article/details/51638126 ★★★★★ C4.5算法详解(非常仔细)
http://blog.csdn.net/lanchunhui/article/details/50980635 机器学习基础(十八) —— decision stump

http://blog.csdn.net/mao_xiao_feng/article/details/52728164 ★★★★★ 对于随机森林的通俗理解
http://blog.csdn.net/w28971023/article/details/8240756 ★★★★★ GBDT(MART) 迭代决策树入门教程 | 简介
http://blog.csdn.net/dark_scope/article/details/14103983 AdaBoost--从原理到实现
http://blog.csdn.net/autocyz/article/details/51305999 ★★★★★ 深度剖析adaboost
http://blog.csdn.net/wangjian1204/article/details/50668929 区分bootstrap、bagging、boosting和adaboost
http://blog.csdn.net/lanchunhui/article/details/50976186 机器学习基础(十六)—— bootstrap
https://www.zhihu.com/question/35228367/answer/87751456 决策树需要归一化处理吗
https://zhuanlan.zhihu.com/p/22097796 说说随机森林
http://blog.csdn.net/q383700092/article/details/53763328 xgboost使用调参

http://blog.csdn.net/xiewenbo/article/details/72902993 揭秘Kaggle神器xgboost

http://blog.csdn.net/willduan1/article/details/73618677 集成学习总结 & Stacking方法详解
http://blog.csdn.net/Mr_tyting/article/details/72957853  机器学习-->集成学习-->Bagging,Boosting,Stacking

【监督】

http://blog.csdn.net/zouxy09/article/details/16955347 ★★★★★ 机器学习算法与Python实践之(一)k近邻(KNN)

http://blog.csdn.net/zouxy09/article/details/42297625 基于稀疏矩阵的k近邻(KNN)实现

http://blog.csdn.net/anneqiqi/article/details/59666980 贝叶斯算法详解

http://blog.csdn.net/amds123/article/details/70173402 ★★★★★带你搞懂朴素贝叶斯分类算法

http://blog.csdn.net/zouxy09/article/details/20319673 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression)
http://blog.csdn.net/u010692239/article/details/52345754 关于线性回归和逻辑回归一些深入的思考
https://www.zhihu.com/question/30726036/answer/103854345 logistic回归属于线性模型还是非线性模型

https://www.zhihu.com/question/29385169/answer/44177582 逻辑斯蒂回归能否解决非线性分类问题

http://blog.csdn.net/xbinworld/article/details/44276389 机器学习方法:回归(二):稀疏与正则约束ridge regression,Lasso
https://www.zhihu.com/question/24627666/answer/28440943 机器学习有很多关于核函数的说法,核函数的定义和作用是什么
https://www.zhihu.com/question/47746939/answer/154058298 怎么样理解SVM中的hinge-loss
http://www.bubuko.com/infodetail-745114.html ★★★★★ 对SVM的个人理解---浅显易懂

【无监督】

http://blog.csdn.net/zouxy09/article/details/17589329 ★★★★★ 机器学习算法与Python实践之(五)k均值聚类(k-means)

http://blog.csdn.net/zouxy09/article/details/17590137 机器学习算法与Python实践之(六)二分k均值聚类

http://blog.csdn.net/zhouxianen1987/article/details/68945844 ★★★★★ 聚类方法:DBSCAN算法研究(1)--DBSCAN原理、流程、参数设置、优缺点以及算法
http://blog.csdn.net/google19890102/article/details/26149927 简单易学的机器学习算法——K-Means算法

http://blog.csdn.net/qunxingvip/article/details/46687435 ★★★★★ Kmeans聚类与dbscan聚类对比

http://blog.csdn.net/bone_ace/article/details/46660819 ★★★★★ Apriori算法的介绍
http://blog.csdn.net/suibianshen2012/article/details/51530952 ★★★★★ Apriori算法简介---关联规则的频繁项集算法

http://blog.csdn.net/weixin_37824397/article/details/61196119 主成分分析(PCA)算法的简单推导和实例
https://blog.csdn.net/google19890102/article/details/27969459 ★★★★★ 简单易学的机器学习算法——主成分分析(PCA)
http://blog.csdn.net/u010146543/article/details/48623039 SVD例子
http://blog.csdn.net/elecjack/article/details/50913874 利用python库计算person相关系数
https://blog.csdn.net/shuzfan/article/details/52993427 1 - 基于卡方检验的特征选择


【神经网络】
http://blog.csdn.net/zouxy09/article/details/13297881 径向基网络(RBF network)之BP监督训练
https://www.zhihu.com/question/44328472/answer/204565494 RBF神经网络和BP神经网络有什么区别
https://www.zhihu.com/question/44328472/answer/128973724 RBF神经网络和BP神经网络有什么区别
http://blog.csdn.net/zouxy09/article/details/45288129 神经网络训练中的Tricks之高效BP(反向传播算法)
http://blog.csdn.net/whitesilence/article/details/75667002 ★★★★★ 深度学习中的Batch Normalization
http://blog.csdn.net/elaine_bao/article/details/50890491 解读Batch Normalization
http://blog.csdn.net/hjimce/article/details/50866313 ★★★★★ 深度学习(二十九)Batch Normalization 学习笔记
https://www.zhihu.com/question/38102762/answer/164790133 深度学习中 Batch Normalization为什么效果好
https://zhuanlan.zhihu.com/p/23178423 ★★★★★ Dropout解决过拟合问题
http://blog.csdn.net/malefactor/article/details/50436735/ 深度学习与自然语言处理之五:从RNN到LSTM
https://www.zhihu.com/question/44895610/answer/154565425 为什么相比于RNN,LSTM在梯度消失上表现更好
http://blog.jobbole.com/105602/ TensorFlow深度学习,一篇文章就够了
http://blog.csdn.net/u010041824/article/details/66972490 tensorflow入门3 卷积神经网络、循环神经网络以及双向lstm手写体识别  
http://blog.csdn.net/u010041824/article/details/65448365 tensorflow入门2 几个函数的总结和手写数字识别  
https://www.researchgate.net/post/How_to_decide_the_number_of_hidden_layers_and_nodes_in_a_hidden_layer decide the number of hidden layers and nodes in a hidden layer?
https://www.cnblogs.com/pinard/p/6437495.html 深度神经网络(DNN)损失函数和激活函数的选择
http://blog.csdn.net/u013139259/article/details/52729191 对抗神经网络(Adversarial Nets)的介绍[1]

https://www.jianshu.com/p/f3a9dc6107c7 深度学习网络调参技巧 - 简书
https://www.cnblogs.com/liuyu124/p/7332476.html ★★★★★ Softmax 函数的特点和作用
https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/5-12-scope/  scope 命名方法

http://home.51.com/wanyou138/diary/wxitem/240129.html 深度学习调参技巧

https://www.zhihu.com/question/41667903 如何高效学习tensorflow

https://zhuanlan.zhihu.com/p/37384376 tensorflow 读取数据

https://www.jianshu.com/p/7e032a8aaad5  训练集、验证集和测试集的意义

 

【推荐系统】

http://blog.csdn.net/liulingyuan6/article/details/54341761 ★★★★★四种推荐系统原理介绍(基于内容过滤/协同过滤/关联规则/序列模式)
http://blog.csdn.net/qq_23942803/article/details/50597907 基于物品的协同过滤中,余弦相似度、皮尔森系数、修正余弦相似度三者的区别
http://blog.csdn.net/pipisorry/article/details/49205589 推荐系统:基于内容的推荐

http://blog.csdn.net/ch18255112191/article/details/51383612 ★★★★★ 推荐常用算法之-基于内容的推荐

https://blog.csdn.net/yimingsilence/article/details/54934302 ★★★★★ 协同过滤推荐算法的原理及实现


【sklearn|keras|scipy|numpy|pandas】
http://blog.csdn.net/yuanyuanxingxing/article/details/52163251 scikit-learn交叉验证Cross Validation and Grid Search

http://blog.csdn.net/lanchunhui/article/details/72794317 sklearn preprocessing 数据预处理(OneHotEncoder)
http://blog.csdn.net/jinlong_xu/article/details/70175107 【matplotlib】plot()kind参数表
http://blog.csdn.net/dream_angel_z/article/details/49406573 Scikit-learn Preprocessing 预处理
http://blog.csdn.net/zouxy09/article/details/48903179  Python机器学习库scikit-learn实践
http://blog.csdn.net/liluo9527/article/details/51028617 Pyhton 中的Scale 和Normalization(正则化)
http://blog.csdn.net/tangwendi/article/details/72790200 如何处理A value is trying to be set on a copy of a slice from a DataFrame.错误
http://blog.csdn.net/appleyuchi/article/details/73503282 通俗地讲清楚fit_transform()和transform()的区别
http://blog.csdn.net/qq_25300563/article/details/50972460 Scipy_Sparse介绍
http://blog.csdn.net/willdeamon/article/details/53465350 sparse matrix(稀疏矩阵)
http://blog.csdn.net/jiandanjinxin/article/details/77175319 keras创建模型
http://blog.csdn.net/gjq246/article/details/72638343 Keras学习笔记(一)
http://blog.csdn.net/jiangpeng59/article/details/77533309 keras:3)Embedding层详解
http://blog.csdn.net/x_ym/article/details/77728732 如何理解keras中的shape/input_shape
https://www.zhihu.com/question/27187105/answer/55895472 scikit-learn中如何保存模型
https://www.cnblogs.com/CheeseZH/p/5250997.html scikit-learn主要模块和基本使用方法
https://www.cnblogs.com/en-heng/p/5630849.html Pandas:让你像写SQL一样做数据分析(一)
https://www.cnblogs.com/chaosimple/p/4153083.html 十分钟搞定pandas
https://www.cnblogs.com/sirkevin/p/5767532.html 利用Python进行数据分析(10) pandas基础: 处理缺失数据
https://read.douban.com/column/6939417/?ici=column&icn=column-category 机器学习之Python
https://www.cnblogs.com/jasonfreak/p/5448385.html 使用sklearn做单机特征工程


【比赛】
http://blog.csdn.net/q383700092/article/details/53842160 对机器学习与数据竞赛的一些总结
http://blog.csdn.net/levy_cui/article/details/72519307 第一次参加Kaggle拿银总结
http://blog.csdn.net/colouroo/article/details/53730011 Kaggle竞赛入门教程之Kaggle简介(新手向)
http://blog.csdn.net/han_xiaoyang/article/details/49797143 机器学习系列(3)_逻辑回归应用之Kaggle泰坦尼克之灾
http://blog.csdn.net/qifuchenluo/article/details/67655388 使用sklearn进行kaggle案例泰坦尼克Titanic船员获救预测
http://blog.csdn.net/yan456jie/article/details/72638774 【干货】Kaggle 数据挖掘比赛经验分享
http://blog.csdn.net/nirendao/article/details/44426201/ gc.collect
https://www.zhihu.com/question/24533374/answer/34631808 参加kaggle竞赛是怎样一种体验
https://www.zhihu.com/question/24533374/answer/34649594 参加kaggle竞赛是怎样一种体验


【others】
http://blog.csdn.net/dashenghuahua/article/details/53841630 15道机器学习面试题,让你顺利得到offer!
http://blog.csdn.net/v_july_v/article/details/78121924 BAT机器学习面试1000题系列(第1~306题)

https://blog.csdn.net/rosener/article/details/68064171 使用maven创建javaWeb项目及运行web项目
https://blog.csdn.net/liuchuanhong1/article/details/52880598  jersey+maven构建restful服务--入门篇

http://www.gapp.gov.cn/govservice/134.shtml 国家新闻出版广电总局 - 新闻出版机构查询
https://jingyan.baidu.com/article/bea41d43b984f3b4c51be687.html 发表论文的期刊有哪些_百度经验
https://jingyan.baidu.com/article/92255446e47b5c851648f4d8.html  如何选择期刊发表论文_百度经验





https://mp.weixin.qq.com/s/CdqUNqDSnk9WWolbhAlT9Q 机器学习与深度学习面试问题总结

综合网网址导航源码程序v20130818,综合网网址导航源码程序最大特点改变了以往网址站一成不变的模式,采用谁对我站贡献大,我站也给予他最大的宣传和展示的机会;只要您在本系统注册登记您的网址,然后在你网站做好我站连接,只要平常连接即可,每次从您网站有用户到我站,那么你的网站将在最近入站以及你网站所在分类的第一位置!连接双方公正平等。 系统前台简介: 1.采用ASP+ACCESS架构,安全稳定 2.防注入功能 3.支持无限级分类,方便自由 4.包含全站数据,拥有上千条网站网址; 5.数据库经过防下载等安全处理,后台可超强命名,随意改动; 6.每来访一个IP,来访网站就会自动排到第一,当天来路不同,显示颜色也不同,鼓励点入(特色) 7.前台统计数据调用,排行数据调用,最新加入网站调用,未审核网站调用等; 8.申请加入免收录网站友情链接网的网站按最后点进的时间排序首页和分类显示链接, 9.分类以昨日点入时间为准,每晚十二点后生成静态。 10.每来访一个IP,就会自动排到第一,当天来路次数不同,显示颜色也不同:有1次即显示,10次即套蓝色,30次即套红色加粗 11.酷站大全里的分类及收录的网站,可后台修改推荐到首页,按推荐级别排行顺序(新) 12.首页白天3分钟,晚上5分钟自动更新一次,全站24小时手动更新一次。 13.站内搜索功能,方便用户找到自己想要的网址 14.网址库中分离出的“名站导航”、“实用工具”、“友情链接” 15.程序全面优化和升级,增强对搜索引擎的收录功能; 16.新闻文章发布功能。 17.网站公告发布功能。 系统后台功能: 1.设置网站的基本信息。 2.管理员帐号/密码更改。 3.添加、修改、删除网站分类。 4.分类、酷站可修改可设置首页是否显示。 5.添加删除修改网址内容,是否推荐,是否审核 6.一健清除网站数据功能,方便重新分类和做行业网站 7.后台网站黑名单功能,让黑名单网站不能显示 8.网站点入点出:清除10分钟数据,清除今天点入数据,清除总点出数据 9.网址库中分离出“名站导航”、“实用工具”、“友情链接”单独管理 10.“名站导航”、“实用工具”可由快速通道添加。 11.“友情链接”从网址列表中设置。 12.站内搜索功能。 13.生成htm分类页面,生成htm主页及其它页面。 14.后台全模板管理与修改,方便你秀出自己的风格;可修改主页,分类及其它页面模板。 15.具有数据在线“备份”、“压缩”、“恢复”功能,让你高枕无忧 16.具有在线广告管理功能,后台广告位标注,全站广告后台控制,轻松更换自己的广告信息;赚钱更容易! 17.新闻文章和公告后台新增和发布功能 18.后台网址管理增加:总出倒序、总入倒序、天入倒序、十入倒序、点入时间倒序、推荐级别倒序、推荐级别正序、按类型(分类)选择这些选项查看网址,更方便大家管理网址 19.后台功能修改为:查看所有的网址、站长加入的网址、用户加入已审核、用户加入未审核、有来路入未审核、被隐藏网站名单、总来路小于五次 V2013.0818版本更新说明 对网址进行添加和删除部分无效的网址 对广告位进行部分修改 安装使用方法 1.解开本程序包,上传到支持ASP的服务器上。 2.数据库文件在data目录,已经做了防下载处理。 3.后台登录地址在admin/index.asp,默认管理员账号:admin,密码:admin,默认的后台安全码是zonghe.com。安全码更改:admin文件夹里的psd.asp文件,把"zonghe.com"这个改成你想要的后台安全验证码。 4.进入后台根据提示设置你网站的基本信息。 5.生成全站及分类一次。 6.为了安全起见,请在后台将管理员帐号和密码全部修改成你自己的。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值