剑指offer 数据流中的中位数

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/henrytien/article/details/70766920

题目描述

如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。

思路:使用使用大小堆


class Solution {
	priority_queue<int, vector<int>, less<int> > p;
    priority_queue<int, vector<int>, greater<int> > q;
public:
    void Insert(int num)
    {
        if(p.empty() || num <= p.top()) p.push(num);
            else q.push(num);
            if(p.size() == q.size() + 2) q.push(p.top()), p.pop();
            if(p.size() + 1 == q.size()) p.push(q.top()), q.pop();
    }

    double GetMedian()
    { 
    return p.size() == q.size() ? (p.top() + q.top()) / 2.0 : p.top();
    }

};


思路2:使用大小堆

class Solution {
public:
    void Insert(int num)
    {
        count+=1;
        // 元素个数是偶数时,将小顶堆堆顶放入大顶堆
        if(count%2==0){
            big_heap.push(num);
            small_heap.push(big_heap.top());
            big_heap.pop();
        }
        else{
            small_heap.push(num);
            big_heap.push(small_heap.top());
            small_heap.pop();
        }
    }
 
    double GetMedian()
    {
        if(count&0x1){
            return big_heap.top();
        }
        else{
            return double((small_heap.top()+big_heap.top())/2.0);
        }
    }
private:
    int count=0;
    priority_queue<int, vector<int>, less<int>> big_heap;        // 左边一个大顶堆
    priority_queue<int, vector<int>, greater<int>> small_heap;   // 右边一个小顶堆
    // 大顶堆所有元素均小于等于小顶堆的所有元素.
};





展开阅读全文

没有更多推荐了,返回首页