Description
The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this:
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame.
Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.
Input
Line 1: A single integer, N
Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.
Output
Line 1: The largest sum achievable using the traversal rules
Sample Input
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
Sample Output
30
Hint
Explanation of the sample:
7
*
3 8
*
8 1 0
*
2 7 4 4
*
4 5 2 6 5
The highest score is achievable by traversing the cows as shown above.
题意:每次向下或者向右下走,求最大和
分析:正向:每步来源于上方或者左上方,dp[i][j];
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
#define N 0x3f3f3f3f
using namespace std;
int map[355][355];
int mapp[355][355];
int n;
int dp(int x,int y)
{
if(x==n)
{
mapp[x][y]=map[x][y];
return mapp[x][y];
}
if(mapp[x][y]>=0)
{
return mapp[x][y];
}
mapp[x][y]=map[x][y]+max(dp(x+1,y),dp(x+1,y+1));//递归式搜索 找出 下一行 最大值
return mapp[x][y];
}
int main()
{
cin>>n;
memset(mapp,-1,sizeof(mapp));
for(int i=0;i<n;i++)
{
for(int j=0;j<=i;j++)
{
cin>>map[i][j];
}
}
dp(0,0);
cout<<mapp[0][0]<<endl;
return 0;
}
另一种方法:
#include <cstring>
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string.h>
//#include <map>
#define ll long long
using namespace std;
#define pai acos(-1,0)
int map[355][355];
int dp[355][355];
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=i;j++)
{
cin>>map[i][j];
}
}
for(int i=1;i<=n;i++)
dp[n][i]=map[n][i];
for(int i=n-1;i>=1;i--)
{
for(int j=1;j<=i;j++)
dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+map[i][j];
}
cout<<dp[1][1]<<endl;
return 0;
}