P1919 【模板】A*B Problem升级版(FFT快速傅里叶)

3 篇文章 0 订阅

传送门

俺也不知道 俺也不敢问 先存着吧

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <complex>
#define pi acos(-1)
#define N 200005
using namespace std;
complex<double> a[N],b[N],p[N];
int n,c[N];
string s,ss;
void FFT(complex<double> x[],int n,int p)
{
	//把原来依次排列的数变成叶子中的顺序
    for (int i=0,t=0;i<n;i++)
    {
        if (i>t) swap(x[i],x[t]);
        for (int j=n>>1;(t^=j)<j;j>>=1);
    }
    for (int m=2;m<=n;m<<=1)  //枚举每一层
    {
        complex<double>       wn(cos(p*2*pi/m),sin(p*2*pi/m));
        for (int i=0;i<n;i+=m)
        {
            complex<double> w(1,0),u;
            int k=m>>1;
            for (int j=0;j<k;j++,w*=wn)
            {
            //蝴蝶操作
                u=x[i+j+k]*w;
                x[i+j+k]=x[i+j]-u;
                x[i+j]=x[i+j]+u;
            }
        }
    }
}
int main()
{
	cin>>n;
    cin>>s; 
    for (int i=0;i<n;i++)
        a[i]=s[n-i-1]-'0';
    cin>>ss;
    for (int i=0;i<n;i++)
        b[i]=ss[n-i-1]-'0';
    //把长度变为2的幂次,方便FFT中的迭代
	n=1;
	while(n<s.size()+ss.size())
	n<<=1;
	FFT(a,n,1),FFT(b,n,1);
    for (int i=0;i<n;i++)
        p[i]=a[i]*b[i];
    //插值
    FFT(p,n,-1);
    for (int i=0;i<n;i++)
        c[i]=p[i].real()/n+0.5;
    int len=0;
    //进位
    for (int i=0;i<n;i++)
        if (c[i])
            len=i,c[i+1]+=c[i]/10,c[i]%=10;
    for (int i=len;i>=0;i--)
        printf("%d",c[i]);
    return 0;
}
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
using namespace std;

const double PI = acos(-1.0);
//复数结构体
struct complex
{
    double r,i;
    complex(double _r = 0.0,double _i = 0.0)
    {
        r = _r; i = _i;
    }
    complex operator +(const complex &b)
    {
        return complex(r+b.r,i+b.i);
    }
    complex operator -(const complex &b)
    {
        return complex(r-b.r,i-b.i);
    }
    complex operator *(const complex &b)
    {
        return complex(r*b.r-i*b.i,r*b.i+i*b.r);
    }
};
/*
 * 进行FFT和IFFT前的反转变换。
 * 位置i和 (i二进制反转后位置)互换
 * len必须去2的幂
 */
void change(complex y[],int len)
{
    int i,j,k;
    for(i = 1, j = len/2;i < len-1; i++)
    {
        if(i < j)swap(y[i],y[j]);
        //交换互为小标反转的元素,i<j保证交换一次
        //i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
        k = len/2;
        while( j >= k)
        {
            j -= k;
            k /= 2;
        }
        if(j < k) j += k;
    }
}
/*
 * 做FFT
 * len必须为2^k形式,
 * on==1时是DFT,on==-1时是IDFT
 */
void fft(complex y[],int len,int on)
{
    change(y,len);
    for(int h = 2; h <= len; h <<= 1)
    {
        complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
        for(int j = 0;j < len;j+=h)
        {
            complex w(1,0);
            for(int k = j;k < j+h/2;k++)
            {
                complex u = y[k];
                complex t = w*y[k+h/2];
                y[k] = u+t;
                y[k+h/2] = u-t;
                w = w*wn;
            }
        }
    }
    if(on == -1)
        for(int i = 0;i < len;i++)
            y[i].r /= len;
}
const int MAXN = 200005;
complex x1[MAXN],x2[MAXN];
char str1[MAXN/2],str2[MAXN/2];
int sum[MAXN];
int main()
{
	int n;
	scanf("%d",&n);
	scanf("%s%s",str1,str2);
    int len1 = strlen(str1);
    int len2 = strlen(str2);
    int len = 1;
    while(len < len1*2 || len < len2*2)len<<=1;
    for(int i = 0;i < len1;i++)
        x1[i] = complex(str1[len1-1-i]-'0',0);
    for(int i = len1;i < len;i++)
        x1[i] = complex(0,0);
    for(int i = 0;i < len2;i++)
        x2[i] = complex(str2[len2-1-i]-'0',0);
    for(int i = len2;i < len;i++)
        x2[i] = complex(0,0);
    //求DFT
    fft(x1,len,1);
    fft(x2,len,1);
    for(int i = 0;i < len;i++)
        x1[i] = x1[i]*x2[i];
    fft(x1,len,-1);
    for(int i = 0;i < len;i++)
        sum[i] = (int)(x1[i].r+0.5);
    for(int i = 0;i < len;i++)
    {
        sum[i+1]+=sum[i]/10;
        sum[i]%=10;
    }
    len = len1+len2-1;
    while(sum[len] <= 0 && len > 0)len--;
    for(int i = len;i >= 0;i--)
        printf("%c",sum[i]+'0');
    printf("\n");
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值