俺也不知道 俺也不敢问 先存着吧
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <complex>
#define pi acos(-1)
#define N 200005
using namespace std;
complex<double> a[N],b[N],p[N];
int n,c[N];
string s,ss;
void FFT(complex<double> x[],int n,int p)
{
//把原来依次排列的数变成叶子中的顺序
for (int i=0,t=0;i<n;i++)
{
if (i>t) swap(x[i],x[t]);
for (int j=n>>1;(t^=j)<j;j>>=1);
}
for (int m=2;m<=n;m<<=1) //枚举每一层
{
complex<double> wn(cos(p*2*pi/m),sin(p*2*pi/m));
for (int i=0;i<n;i+=m)
{
complex<double> w(1,0),u;
int k=m>>1;
for (int j=0;j<k;j++,w*=wn)
{
//蝴蝶操作
u=x[i+j+k]*w;
x[i+j+k]=x[i+j]-u;
x[i+j]=x[i+j]+u;
}
}
}
}
int main()
{
cin>>n;
cin>>s;
for (int i=0;i<n;i++)
a[i]=s[n-i-1]-'0';
cin>>ss;
for (int i=0;i<n;i++)
b[i]=ss[n-i-1]-'0';
//把长度变为2的幂次,方便FFT中的迭代
n=1;
while(n<s.size()+ss.size())
n<<=1;
FFT(a,n,1),FFT(b,n,1);
for (int i=0;i<n;i++)
p[i]=a[i]*b[i];
//插值
FFT(p,n,-1);
for (int i=0;i<n;i++)
c[i]=p[i].real()/n+0.5;
int len=0;
//进位
for (int i=0;i<n;i++)
if (c[i])
len=i,c[i+1]+=c[i]/10,c[i]%=10;
for (int i=len;i>=0;i--)
printf("%d",c[i]);
return 0;
}
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
using namespace std;
const double PI = acos(-1.0);
//复数结构体
struct complex
{
double r,i;
complex(double _r = 0.0,double _i = 0.0)
{
r = _r; i = _i;
}
complex operator +(const complex &b)
{
return complex(r+b.r,i+b.i);
}
complex operator -(const complex &b)
{
return complex(r-b.r,i-b.i);
}
complex operator *(const complex &b)
{
return complex(r*b.r-i*b.i,r*b.i+i*b.r);
}
};
/*
* 进行FFT和IFFT前的反转变换。
* 位置i和 (i二进制反转后位置)互换
* len必须去2的幂
*/
void change(complex y[],int len)
{
int i,j,k;
for(i = 1, j = len/2;i < len-1; i++)
{
if(i < j)swap(y[i],y[j]);
//交换互为小标反转的元素,i<j保证交换一次
//i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
k = len/2;
while( j >= k)
{
j -= k;
k /= 2;
}
if(j < k) j += k;
}
}
/*
* 做FFT
* len必须为2^k形式,
* on==1时是DFT,on==-1时是IDFT
*/
void fft(complex y[],int len,int on)
{
change(y,len);
for(int h = 2; h <= len; h <<= 1)
{
complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
for(int j = 0;j < len;j+=h)
{
complex w(1,0);
for(int k = j;k < j+h/2;k++)
{
complex u = y[k];
complex t = w*y[k+h/2];
y[k] = u+t;
y[k+h/2] = u-t;
w = w*wn;
}
}
}
if(on == -1)
for(int i = 0;i < len;i++)
y[i].r /= len;
}
const int MAXN = 200005;
complex x1[MAXN],x2[MAXN];
char str1[MAXN/2],str2[MAXN/2];
int sum[MAXN];
int main()
{
int n;
scanf("%d",&n);
scanf("%s%s",str1,str2);
int len1 = strlen(str1);
int len2 = strlen(str2);
int len = 1;
while(len < len1*2 || len < len2*2)len<<=1;
for(int i = 0;i < len1;i++)
x1[i] = complex(str1[len1-1-i]-'0',0);
for(int i = len1;i < len;i++)
x1[i] = complex(0,0);
for(int i = 0;i < len2;i++)
x2[i] = complex(str2[len2-1-i]-'0',0);
for(int i = len2;i < len;i++)
x2[i] = complex(0,0);
//求DFT
fft(x1,len,1);
fft(x2,len,1);
for(int i = 0;i < len;i++)
x1[i] = x1[i]*x2[i];
fft(x1,len,-1);
for(int i = 0;i < len;i++)
sum[i] = (int)(x1[i].r+0.5);
for(int i = 0;i < len;i++)
{
sum[i+1]+=sum[i]/10;
sum[i]%=10;
}
len = len1+len2-1;
while(sum[len] <= 0 && len > 0)len--;
for(int i = len;i >= 0;i--)
printf("%c",sum[i]+'0');
printf("\n");
return 0;
}