Wav2lip-GAN 环境配置

首先使用 conda 创建新的虚拟环境,然后激活这个环境

conda create -n myenv python=3.8
activate myenv

使用 git 克隆代码,或者直接下载源码压缩包解压,安装依赖(我使用的豆瓣源)

git clone https://github.com/Rudrabha/Wav2Lip.git
cd Wav2Lip
pip install -r requirements.txt -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

我修改过后的 requirements.txt 依赖如下:

librosa==0.7.0
numpy==1.17.3
opencv-contrib-python>=4.2.0.34
opencv-python==4.1.2.30
torch==1.8.0
torchvision==0.9.0
tqdm==4.45.0
numba==0.48

接下来需要安装 ffmpeg,这是音视频处理的神器,ubuntu 版本使用 apt 安装

sudo apt install ffmpeg

我是 windows 版本,需手动下载安装,安装地址:ffmpeg

在这里插入图片描述

我这里下载的是 6.0 版本。

解压后将 bin 对应的路径添加到系统环境变量 PATH 中。添加过后需重启电脑使 ffmpeg 生效。

然后下载视频材料:game.mp4

音频材料我是自己找的2s的 mp3文件,命名为 2s.mp3

然后准备模型文件:
(1)脸部检测预训练模型,下载地址:脸部检测模型
放到 Wav2Lip下的 face_detection/detection/sfd 目录下,并重命名为 s3fd.pth。
(2)下载模型文件,我使用的是 Wav2Lip + GAN,下载地址:Wav2Lip + GAN
下载后放在项目根目录。

以上都配好后,执行命令:

python inference.py --checkpoint_path wav2lip_gan.pth --face game.mp4 --audio 2s.mp3

结果出现报错如下:
AttributeError: partially initialized module ‘cv2‘ has no attribute ‘gapi_wip_gst_GStreamerPipeli

解决办法:(这里安装我带上了本机代理、不带安装失败)

pip install opencv-python install "opencv-python-headless<4.3" --proxy http://127.0.0.1:7890

以上问题解决过之后,查看日志输出:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

合成结果输出在 Wav2Lip 中的 results 下。

在这里插入图片描述

<think>好的,我现在需要处理用户关于Wav2Lip数字人技术的查询。用户想要了解实现教程或开源项目。首先,我得回忆一下Wav2Lip的基本信息,它主要用于同步唇形与音频,常用于数字人项目。用户提到的引用中有几个关键点:使用C#/WPF集成、优化嘴部效果、与VITS模型结合提高实时性,以及环境安装步骤。 首先,用户需要教程和开源项目。我应该整理出分步的实现流程,包括环境配置、代码获取、准备素材、运行推理和集成到应用。根据引用[4],环境安装需要Python 3.9和FFmpeg,所以这部分要详细说明。代码部分,官方的GitHub仓库是必须提到的,还可能推荐一些社区项目,比如与SadTalker结合的例子。 然后,用户可能遇到的问题,比如嘴部不清晰,引用[2]提到解决方案,比如预处理视频帧、后处理优化、结合GAN或使用高清模型。这些需要作为优化建议列出。此外,引用[3]提到的与VITS集成优化实时性,可以作为一个高级应用场景,说明如何直接传递numpy数据跳过文件读取,提升效率。 开源项目方面,除了官方仓库,可能需要收集一些高星或活跃的项目,比如Wav2Lip-GFPGAN用于增强画质,或者Wav2Lip-HQ。同时,结合其他模型如SadTalker的项目可能对用户有帮助,特别是多模态驱动的案例。 注意事项部分,硬件要求、数据质量和模型调参都是关键点,需要提醒用户。相关问题部分,要涵盖同步原理、嘴型优化、实时性、多模态结合以及商业应用,这样用户可以有进一步探索的方向。 需要确保所有LaTeX格式正确,但用户的问题中可能不涉及数学公式,所以可能不需要使用。不过按照系统指令,如果有任何行内表达式,比如提到模型结构中的参数,需要用$...$,但这里可能不适用。检查引用标注是否正确,每个引用对应的点是否准确,比如环境安装引用[4],嘴部优化引用[2],VITS集成引用[3],WPF启动引用[1]。 最后,确保回答结构清晰,分步骤和部分,使用代码块展示命令行操作,以及相关开源项目的链接。语言要简洁,用中文,并且自然流畅,避免技术术语过于密集,适当解释步骤的目的,比如为什么需要安装FFmpeg,因为它处理音视频流。</think>### Wav2Lip数字人技术实现教程 #### 一、基础环境配置 1. 安装Python 3.9与FFmpeg ```bash conda create -n wav2lip python=3.9.0 conda activate wav2lip conda install ffmpeg # 用于音视频处理[^4] ``` 2. 安装依赖库 ```bash pip install numpy opencv-python torch librosa ``` #### 二、代码获取与模型下载 1. 克隆官方仓库 ```bash git clone https://github.com/Rudrabha/Wav2Lip.git ``` 2. 下载预训练模型 - 唇形同步模型:[wav2lip.pth](https://iiitaphyd-my.sharepoint.com/personal/radrabha_m_research_iiit_ac_in/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fradrabha%5Fm%5Fresearch%5Fiiit%5Fac%5Fin%2FDocuments%2FWav2Lip%20Models%2F&ga=1) - 高清增强模型:[wav2lip_gan.pth](https://iiitaphyd-my.sharepoint.com/personal/radrabha_m_research_iiit_ac_in/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fradrabha%5Fm%5Fresearch%5Fiiit%5Fac%5Fin%2FDocuments%2FWav2Lip%20Models%2F&ga=1) #### 三、核心实现流程 1. **输入准备** - 目标视频:人物面部特写(推荐25FPS,分辨率≥256x256) - 输入音频:需与视频时长对齐(支持WAV/MP3格式) 2. **运行推理** ```bash python inference.py --checkpoint_path wav2lip.pth \ --face input_video.mp4 \ --audio input_audio.wav \ --outfile output.mp4 ``` 3. **WPF集成示例** ```csharp // 引用System.Windows.Media.Imaging var videoSource = new Uri("output.mp4"); mediaElement.Source = videoSource; mediaElement.Play(); // 通过WPF控件播放生成视频[^1] ``` --- ### 开源项目推荐 | 项目名称 | 特点 | 链接 | |-------------------------|------------------------------------------|----------------------------------------------------------------------| | Wav2Lip官方实现 | 基础唇形同步,支持GAN增强 | [GitHub](https://github.com/Rudrabha/Wav2Lip) | | Wav2Lip-GFPGAN | 结合超分辨率模型提升画质 | [GitHub](https://github.com/xinntao/GFPGAN) | | SadTalker-Wav2Lip | 支持多模态驱动(表情+唇形) | [GitHub](https://github.com/OpenTalker/SadTalker) | | Wav2Lip-HQ | 改进嘴部细节生成 | [GitHub](https://github.com/indianajson/Wav2Lip-HQ) | --- ### 嘴型优化方案 1. **预处理优化** - 使用人脸关键点检测对齐视频帧(如DLIB库) - 对输入视频进行超分辨率重建[^2] 2. **后处理方法** ```python # 使用形态学操作增强嘴部区域 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) enhanced_mouth = cv2.morphologyEx(mouth_roi, cv2.MORPH_CLOSE, kernel) ``` 3. **模型级改进** - 联合训练唇形分割网络(如LipNet) - 引入时间卷积网络(TCN)优化时序连续性 --- ### 实时性优化技巧 1. **数据流优化** ```python # 直接传递numpy数据,避免文件IO[^3] audio_numpy = vits_model.generate(text) # VITS生成音频 wav2lip_input = librosa.util.normalize(audio_numpy) ``` 2. **模型轻量化** - 使用知识蒸馏压缩模型(如MobileNetV3替换ResNet50) - 量化模型至FP16精度 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

henulmh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值