中国剩余定理 扩展中国剩余定理

一、中国剩余定理

对于 x ≡ a1(mod m1)
x ≡ a2(mod m2)
x ≡ a3(mod m3)
…………
且 m1 m2 m3…两两互质 此时可运用中国剩余定理
首先求出
s=m1m2m3
M[i]=s/m[i]
t[i]为M[i]关于m[i]的逆元
则最终求得的x =∑(a[i]*t[i]*M[i])%s
代码如下

#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll ksc(ll a,ll b,ll p)  //此处用快速乘,防止爆
{
	ll ret=0;
	while(b)
	{
		if(b&1)
		ret=(ret+a)%p;
		a=(a+a)%p;
		b>>=1;
	}
	return ret;
}
ll ojld(ll a,ll b,ll &x,ll&y) //此处为扩展欧几里得的方法求逆元
{
	if(!b)
	{
		x=1;
		y=0;
		return a;
	}
	ll d=ojld(b,a%b,x,y);
	ll t=x;
	x=y;
	y=t-a/b*y;
	return d;
}
ll inv(ll b,ll p)
{
	ll x,y;
	ll w=ojld(b,p,x,y);
	if(w!=1)
	return -1;
	return (x%p+p)%p;
}
int main()
{
	ll k,a[10],b[10],s=1,m[10],sum=0;
	scanf("%lld",&k);
	for(ll i=0;i<k;i++)
	scanf("%lld",&a[i]);
	for(ll i=0;i<k;i++)
	{
	scanf("%lld",&b[i]);
	s*=b[i]; //求出乘积s
	}
	for(ll i=0;i<k;i++)
	{
	m[i]=s/b[i];
	ll k=inv(m[i],b[i]); //每次的k就相当于上述中的t[i],为每次求得的逆元
	sum=(sum+ksc(ksc(a[i],m[i],s),k,s))%s;//此处乘法运算时运用了快速乘
	}
	printf("%lld\n",sum);
	return 0;
} 

二、扩展中国剩余定理

扩展中国剩余定理跟中国剩余定理是毛关系都没有的
同样是对于 x ≡ a1(mod m1)
x ≡ a2(mod m2)
x ≡ a3(mod m3)
…………
在没有规定 m1 m2 m3 两两互质的情况下求x
扩展中国剩余定理就是利用拓展欧几里得,每次将两个式子合并为一个式子,依次合并,最终求解

如 对于前两个式子 x=a1+k1 * m1
x=a2+k2 * m2
即可得 m1 * k1 - m2 * k2=a2-a1 就相当于 ax+by=c 其中 k1 k2 相当于x,y
为确保c为正 可 int c=((a2-a1)%m2+m2)%m2
通过扩展欧几里得求出gcd(m1,m2) 为d,且求出了k1,然后k1再乘 (a2-a1)/d 便得到了一个解,
(此处相乘运用了快速乘防爆)
然后将此时得到的k1带入 x=a1+k1 * m1 便得到x
这两个式子合并后的方程设为 X=A+k*N 其中这个A就为刚才求得的x,N就为m1 * m2/d
代码如下

#include <cstdio>
const int maxn = 100010;
typedef long long ll;
int n;
ll a[maxn],b[maxn],a1,b1,x,y;
ll exgcd(ll a,ll b,ll &x,ll &y)
{
    if(!b)
    { 
    x=1; 
    y=0;
    return a;
    }
    ll d=exgcd(b,a%b,x,y);
    ll z=x; 
       x=y;
       y=z-(a/b)*y;
       return d;
}
ll ksc(ll n,ll k,ll mod){
    ll ans=0;
    while(k)
	{
      if(k&1) ans=(ans+n)%mod;
      n=(n+n)%mod;
	  k>>=1;
    }
    return ans;
}
int main(){
    scanf("%d", &n);
    for(int i=1;i<=n;++i)
    scanf("%lld%lld", &b[i], &a[i]);
    a1=a[1];
    b1=b[1];//此处对第一个式子的a[1] b[1]赋值,在后面的for循环中每次更新a1 b1 的值为合并后两式子的A N
    for(int i=2;i<=n;++i)
	{
       	ll c=((a[i]-a1)%b[i]+b[i])%b[i];
       	ll g=exgcd(b1,b[i],x,y);
       	x=ksc(x,c/g,b[i]);
       	a1=a1+b1*x;//将求得的x带入原式子得到值作为合并式子的a1值
       	b1=b1*(b[i]/g);//合并式子的N值为两个式子的b的最小公倍数
       	a1=(a1+b1)%b1;//此处取模
    }
    	printf("%lld\n",a1);
   	    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

henulmh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值