若要获取全文以及其他需求,请扫一扫下方的名片进行获取与咨询。
撰写不易,感谢支持!
一、选题的依据及意义
在当今这个数据爆炸和流量横流的时代,随着互联网的快速发展,越来越多的网民习惯性地从网络中获取需要的数据来解决生活中的众多问题,但是网络上混杂的海量数据给人们筛选出自己想要的数据造成了巨大的困难[1]。本研究所开发设计的推荐系统就是为解决当今电影信息过载、用户需求不明确的问题,使用户相比于使用搜索引擎[2],更容易获得自己感兴趣的电影信息,使得服务个性化更强。 推荐系统通过预测用户偏好,精准地向用户推荐其感兴趣的内容,能够帮助用户在海量数据中快速筛选出有效信息,因此被广泛应用于电影、音乐和短视频等领域中。通过大数据进行数据分析,个性化推荐系统能够根据用户的兴趣和行为,为用户推荐其可能感兴趣的内容[2]。客户通过观看电影,产生大量特征信息。利用大数据可以统计出用户偏好,购买习惯,为电影企业的发展策略提供了方向。提高用户在互联网中的信息获取效率。电影推荐系统作为个性化推荐系统的一个应用领域,具有广泛的市场需求和应用价值。
二、国内外研究综述
(一)国外研究综述
在国外,个性化推荐系统的研究已经取得了显著的成果。AlphaGo [3]、Netflix 等公司的推荐算法在全球范围内具有较高的知名度,AlphaGo2016 和 2017 年的比赛为围棋发展提供了独特的机会,在西方国家声名远播[4]。“推荐系统”这个概念首次由 Resnick 在 1997 年提出,此后就一直被广泛引用。2007 年,ACM 推荐系统会议开始举办,这是第一个以 “推荐系统”命名的顶级会议,旨在分享研究成果和方法,推动该领域的发展。现在, AI(人工智能)、DM(数据挖掘)等学科的研究更加推动了推荐系统的发展。
(二)国内研究综述
国内方面,近年来,我国也在个性化推荐领域取得了突破性进展,如淘宝、京东等电 商平台,以及抖音、快手等短视频平台都采用了基于大数据和人工智能的推荐算法。国内 的淘宝网也是典型代表。淘宝 app 首页的“必买清单”其实就是根据用户的浏览和购物行为而自动生成的产品推荐。当用户购买商品之后,页面下方有“你可能喜欢”板块,这样对用户进行针对性的推荐,极大的促进了每日的交易量。
三、研究的目标与研究内容
(一)研究目标
本研究设计并实现一个基于个性化电影推荐系统。首先从用户角度阐述了系统的需求,规划了推荐系统总体架构,然后基于上述两种算法设计了一款推荐引擎,并将推荐引擎集成到该系统中[5],最后建立了数据库表,完成了功能模块的开发。
(二)研究内容
系统主要分为以下几个模块:
(1)数据采集与预处理:从网络电影数据库中获取电影信息,包括电影名称、类型、导演、演员、评分等,并对数据进行预处理,为后续推荐算法提供基础数据。
(2)用户行为分析:分析用户在平台上的浏览、搜索、评分等行为,提取用户兴趣特征,为推荐算法提供依据。
(3)推荐算法设计:采用协同过滤、内容推荐、 数据分析等算法,结合用户兴趣爱好特征和电影信息分析,为用户生成个性化推荐列表。
(4)推荐结果展示:将推荐列表以数据图形式的界面展示给用户,数据图形式可让用户选择,并提供搜索、筛选、评论、喜好等功能,提高用户体验。
(三)可行性分析
电影推荐系统前端采用 Vue.js ,后端使用框架进行开发,数据库使用 MySQL 数据库。电影数据来源于相关电影网站,采用 Python 爬虫进行爬取相关电影的数据,将数据插入MYSQL 数据库,然后在前端进行数据展示。后台主要进行电影相关基本数据的管理功能。给用户推荐的电影数据写入到数据库中进行存储。推荐算法采用协同过滤算法,来实现系统的个性化推荐功能。
四、研究方法
首先,基于观影心理动机将用户兴趣分为长期兴趣和短期兴趣[6],利用兴趣评分与关注频率计算长短期兴趣值;其次,利用时间窗口与遗忘曲线函数获取时间权重,结合短期兴趣值与时间权重来拟合短期兴趣的演化规律;最后,将电影评分与长短期兴趣值相融合,构建用户-项目评分矩阵,预测目标用户评分[7]。
(1)文献综述:查阅相关领域文献,了解现有推荐算法的原理和应用,为后续算法设计提供理论支持。
(2)数据采集与预处理:爬取网络电影数据库,进行数据预处理,构建电影信息数据库。
(3)用户行为分析:对用户行为数据进行挖掘和分析,提取用户兴趣特征进行个性化分类。
(4)推荐算法实现:根据现有算法,编写推荐系统代码,实现电影推荐功能。
(5)系统测试与优化:对系统不断进行测试与调试,并对其进行优化。
五、进度安排
1--- 2023-11-27~2023-12-3,在学校项目系统进行选题,并确定选题为基于个性化电影推荐系统的设计与实现;
2 ---2023-12-4~2024-1-5,根据确定的题目和任务书,查阅相关文献资料,对基于个性化电影推荐系统的设计与实进行调研、撰写开题报告;
3 ---2024-1-6~2024-3-12,进行毕业lw设计,准备中期检查,填写中期检查报告;
4 ---2024-3-13~2024-4-5,根据中期检查结果,继续修改完善,形成毕业lw的初稿;准备初稿查重;
5 ---2024-4-6~2024-4-15,根据初稿查重结果,继续修改完善,形成毕业lw的定稿;准备定稿查重;
6---2024-4-16~2024-4-23,根据定稿查重结果,继续修改完善,形成毕业lw最终的定稿;
7---2024-4-24~2024-5-13,准备毕业设计答辩,根据交叉评阅意见和答辩结果,继续修改完善,形成毕业lw的最终稿;
六、主要参考文献
[1] 刘瑞,陈烨.考虑长短期兴趣及其演化的电影个性化动态推荐研究[J/OL].数据分析与知识发现:1-18[2023-12-31].
[2] 基于用户的协同过滤算法的推荐效率和个性化改进[J]. 王成;朱志刚;张玉侠;苏芳芳.小型微型计算
机系统,2019(03).
[3] Movie recommendation based on bridging movie feature and user interest[J]. Jing Li;;Wentao Xu;;Wenbo Wan;;Jiande Sun.Journal of Computational Science,2018.
[4] Exploring the Effects of Source Credibility and Others’ Comments on Online News Evaluation
[J]. Youngju Kim.Electronic News,2019.
[5]喻頔. 基于用户兴趣与时间效应相融合的个性化推荐算法研究与应用[D].广东海洋大学,2022.DOI:10.27788/d.cnki.ggdhy.2021.000120.
[6] 基于用户行为的电影推荐系统的设计与实现[D]. 冯康.安徽理工大学,2018.
[7]司品印,齐亚莉,王晶.基于协同过滤算法的个性化电影推荐系统的实现[J].北京印刷学院学报,2023,31(06):45-52.DOI:10.19461/j.cnki.1004-8626.2023.06.011.