# View more python learning tutorial on my Youtube and Youku channel!!!
# Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg
# Youku video tutorial: http://i.youku.com/pythontutorial
"""
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
"""
# 如何建造神经网络
from __future__ import print_function
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def add_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
#声称数据
x_data = np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape).astype(np.float32)
y_data = np.square(x_data) - 0.5 + noise
#print(x_data)
#利用占位符定义我们所需的神经网络的输入。 tf.placeholder()就是代表占位符,
#这里的None代表无论输入有多少都可以,因为输入只有一个特征,所以这里是1。
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
'''
我们就可以开始定义神经层了。 通常神经层都包括输入层、隐藏层和输出层。
这里的输入层只有一个属性, 所以我们就只有一个输入;隐藏层我们可以自己假设,
这里我们假设隐藏层有10个神经元; 输出层和输入层的结构是一样的,所以我们的输出层也是只有一层。
所以,我们构建的是——输入层1个、隐藏层10个、输出层1个的神经网络。
'''
#定义隐藏层
layer1 = add_layer(xs,1,10,activation_function=tf.nn.relu)
#定义输出层|预测 没有激励函数
prediction = add_layer(layer1,10,1,activation_function=None)
#求取预测值和真实值的误差
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1]))
#使用优化器来最小化误差
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# 重要一步,变量初始化
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
#plot the real data
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
plt.ion() #plt.ion()用于连续显示
plt.show()
#plot the prediction data
for i in range(3000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50 == 0:
try: ax.lines.remove(lines[0])
except Exception:
pass
#print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
prediction_value = sess.run(prediction,feed_dict={xs:x_data,ys:y_data})
#plot the prediction data
lines = ax.plot(x_data,prediction_value,'r-',lw=5)
plt.pause(1) #暂停1秒再继续
# Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg
# Youku video tutorial: http://i.youku.com/pythontutorial
"""
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
"""
# 如何建造神经网络
from __future__ import print_function
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def add_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
#声称数据
x_data = np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape).astype(np.float32)
y_data = np.square(x_data) - 0.5 + noise
#print(x_data)
#利用占位符定义我们所需的神经网络的输入。 tf.placeholder()就是代表占位符,
#这里的None代表无论输入有多少都可以,因为输入只有一个特征,所以这里是1。
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
'''
我们就可以开始定义神经层了。 通常神经层都包括输入层、隐藏层和输出层。
这里的输入层只有一个属性, 所以我们就只有一个输入;隐藏层我们可以自己假设,
这里我们假设隐藏层有10个神经元; 输出层和输入层的结构是一样的,所以我们的输出层也是只有一层。
所以,我们构建的是——输入层1个、隐藏层10个、输出层1个的神经网络。
'''
#定义隐藏层
layer1 = add_layer(xs,1,10,activation_function=tf.nn.relu)
#定义输出层|预测 没有激励函数
prediction = add_layer(layer1,10,1,activation_function=None)
#求取预测值和真实值的误差
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1]))
#使用优化器来最小化误差
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# 重要一步,变量初始化
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
#plot the real data
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
plt.ion() #plt.ion()用于连续显示
plt.show()
#plot the prediction data
for i in range(3000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50 == 0:
try: ax.lines.remove(lines[0])
except Exception:
pass
#print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
prediction_value = sess.run(prediction,feed_dict={xs:x_data,ys:y_data})
#plot the prediction data
lines = ax.plot(x_data,prediction_value,'r-',lw=5)
plt.pause(1) #暂停1秒再继续