题目地址:
https://leetcode.com/problems/divide-two-integers/
描述:
Divide two integers without using multiplication, division and mod operator.
If it is overflow, return MAX_INT.
分析
http://www.tuicool.com/articles/FNrUvyE
我们知道任何一个整数可以表示成以2的幂为底的一组基的线性组合,即num=a_0*2^0+a_1*2^1+a_2*2^2+...+a_n*2^n。基于以上这个公式以及左移一位相当于乘以2,我们 先让除数左移直到大于被除数之前得到一个最大的基。然后接下来我们每次尝试减去这个基,如果可以则结果增加加2^k,然后基继续右移迭代,直到基为0为止。因为这个方法的迭代次数是按2的幂知道超过结果,所以时间复杂度为O(logn)。
https://leetcode.com/problems/divide-two-integers/
描述:
Divide two integers without using multiplication, division and mod operator.
If it is overflow, return MAX_INT.
分析
http://www.tuicool.com/articles/FNrUvyE
我们知道任何一个整数可以表示成以2的幂为底的一组基的线性组合,即num=a_0*2^0+a_1*2^1+a_2*2^2+...+a_n*2^n。基于以上这个公式以及左移一位相当于乘以2,我们 先让除数左移直到大于被除数之前得到一个最大的基。然后接下来我们每次尝试减去这个基,如果可以则结果增加加2^k,然后基继续右移迭代,直到基为0为止。因为这个方法的迭代次数是按2的幂知道超过结果,所以时间复杂度为O(logn)。
代码
class Solution {
public:
int divide(int dividend, int divisor) {
int sign=1; //采用这个方法来判断符号
#define LL long long
LL dd=dividend; //转为LL类型,防止溢出
LL dr=divisor;
if(dividend<0){
sign=-sign;
dd=-dd;
}
if(divisor<0){
sign=-sign;
dr=-dr;
}
// if(dd<dr)
// return 0;
LL result=0;
LL b=1;
while(dr<=dd){ //要有等号
dr<<=1;
b<<=1;
}
dr>>=1;
b>>=1;
while(b>0){
if(dd>=dr){ //要有等号
dd-=dr;
result+=b;
}
dr>>=1;
b>>=1;
}
return sign*result>2147483647 ? INT_MAX : sign*result; //(-2147483648,-1)时会溢出
}
};