1. 背景介绍
近年来,AI生成PPT已经成为AI+办公领域的热门应用,尤其是中文大语言模型如DeepSeek和Kimi的加入,更是让这一流程变得轻松便捷。然而,对于很多非技术用户来说,调用API过于麻烦,甚至还涉及编程环境配置,这劝退了一大批人。
本篇文章介绍一个纯网页操作的方案,零代码、零API、纯手动也能完成全流程AI生成PPT,从内容到排版一气呵成,适合所有用户,办公党、学生党都能无痛上手。
2. 所需工具
工具 | 网址 | 功能 |
---|---|---|
DeepSeek | https://deepseek.com | 生成PPT内容大纲和正文 |
Kimi | https://kimi.moonshot.cn | 一键排版生成PPT |
3. 全流程图解
DeepSeek生成内容大纲 + 详细正文 → Kimi PPT助手一键排版 → 下载PPT文件
4. 操作步骤
Step 1:内容生成(DeepSeek)
打开 DeepSeek官网,并通过对话方式生成PPT内容。
示例提问:
“你是一个学生,要在组会上汇报小目标检测的实验,请按markdown格式输出完整汇报内容。”
DeepSeek示例输出:
# 小目标检测实验汇报
## 1. 研究背景
小目标检测是计算机视觉中的重要任务,广泛应用于监控、自动驾驶、医学影像等领域。由于小目标在图像中像素占比低、特征不明显,检测难度较大。本次实验旨在探索小目标的检测方法,并评估不同模型的效果。
---
## 2. 实验目标
- 探索适用于小目标检测的深度学习模型。
- 对比不同模型在小目标检测任务中的性能。
- 分析模型在小目标检测中的优缺点。
---
## 3. 数据集
- **数据集名称**: VOC2007 + COCO2017 小目标子集
- **数据集特点**:
- 小目标占比高(目标尺寸小于 32x32 像素)。
- 类别多样,背景复杂。
- **数据预处理**:
- 图像缩放到统一尺寸(640x640)。
- 数据增强:随机裁剪、水平翻转、颜色抖动。
---
## 4. 实验方法
### 4.1 模型选择
- **YOLOv5**: 以速度和精度平衡著称,适合实时检测。
- **Faster R-CNN**: 经典的两阶段检测模型,精度较高。
- **SSD**: 单阶段检测模型,速度快但小目标检测效果较差。
- **改进模型**: 在 YOLOv5 基础上增加 FPN(特征金字塔网络)以提升小目标检测能力。
### 4.2 实验设置
- **硬件环境**: NVIDIA GTX 1080Ti GPU
- **框架**: PyTorch
- **训练参数**:
- Batch Size: 16
- Epochs: 100
- 学习率: 初始 0.001,使用余弦退火策略
---
## 5. 实验结果
### 5.1 性能指标
| 模型 | mAP(小目标) | 推理速度(FPS) | 参数量(M) |
|---------------|--------------|----------------|------------|
| YOLOv5 | 0.52 | 45 | 7.2 |
| Faster R-CNN | 0.58 | 12 | 136.8 |
| SSD | 0.47 | 60 | 26.8 |
| YOLOv5+FPN | 0.61 | 38 | 8.5 |
### 5.2 可视化结果
- **YOLOv5+FPN** 在小目标检测中表现最好,能够准确检测到更多小目标。
- **SSD** 速度最快,但漏检率较高。
- **Faster R-CNN** 精度较高,但推理速度较慢。
---
## 6. 分析与讨论
- **YOLOv5+FPN** 通过引入 FPN 提升了特征融合能力,显著改善了小目标检测效果。
- **Faster R-CNN** 虽然精度较高,但计算量大,不适合实时检测场景。
- **SSD** 尽管速度快,但其对小目标的检测能力较弱,适合目标尺寸较大的场景。
---
## 7. 未来工作
- 尝试更先进的模型架构,如 Transformer-based 检测器。
- 探索数据增强策略,进一步提升小目标检测性能。
- 在更大规模和多样性的数据集上进行验证。
---
## 8. 总结
本次实验通过对比不同模型在小目标检测中的表现,发现 YOLOv5+FPN 在精度和速度上达到了较好的平衡。未来将继续优化模型,提升小目标检测的鲁棒性和泛化能力。
---
## 9. Q&A
欢迎提问与讨论!
Step 2:复制内容,粘贴到Kimi
- 打开 Kimi官网
- 选择“Kimi+”功能
- 选择“PPT助手”
- 将DeepSeek生成的markdown内容粘贴到对话框
- 一键生成PPT
Step 3:下载PPT
Kimi生成的PPT不仅排版美观,而且结构清晰,直接可以下载使用,非常适合应对临时需求,如课程作业、项目汇报、组会分享等场景。



5. DeepSeek内容生成示例
💡 示例:小目标检测实验汇报
# 小目标检测实验汇报
## 1. 研究背景
小目标检测是计算机视觉的重要方向,广泛用于监控、自动驾驶、医学影像等。由于小目标像素占比低,特征不明显,检测难度大。
## 2. 实验目标
- 探索小目标检测的有效模型。
- 对比不同模型的检测性能。
- 分析优缺点并总结经验。
## 3. 数据集
- VOC2007 + COCO2017小目标子集
- 小目标尺寸 < 32x32像素
- 数据增强包括随机裁剪、颜色抖动等
## 4. 实验方法
- 模型:YOLOv5、Faster R-CNN、SSD、YOLOv5+FPN
- 训练参数:batch=16,epoch=100,学习率余弦退火
- 评估指标:mAP、FPS、参数量
## 5. 结果分析
| 模型 | mAP(小目标) | FPS | 参数量 |
|---|---|---|---|
| YOLOv5 | 0.52 | 45 | 7.2M |
| Faster R-CNN | 0.58 | 12 | 136.8M |
| SSD | 0.47 | 60 | 26.8M |
| YOLOv5+FPN | 0.61 | 38 | 8.5M |
## 6. 结论
- YOLOv5+FPN效果最好
- Faster R-CNN精度高但慢
- SSD快但漏检多
- FPN对小目标检测提升明显
6. Kimi生成PPT效果预览
7. 总结
优势 | 说明 |
---|---|
0代码门槛 | 无需Python/调用API,纯网页操作 |
内容+排版一站式 | DeepSeek负责内容,Kimi负责排版 |
效果美观 | PPT结构清晰,模板美观大方 |
灵活可控 | 内容随时调整,兼顾灵感与效率 |
8. 加分项:DeepSeek本地化部署(选学)
如果担心网站不稳定,或者想要“私有化使用”,还可以参考:
9. 结尾彩蛋
📌 这种全程AI自动化生成PPT的能力,不仅适合学生党“摸鱼赶ddl”,也适合职场党高效完成周报、汇报、提案等任务。
💬 想看更多AI办公技巧?评论区告诉我你的需求!
如果你觉得这个教程实用,欢迎点赞+收藏+分享,带更多朋友一起高效办公~