3分钟搞定PPT,从内容到设计全自动!DeepSeek+Kimi爽到飞起

1. 背景介绍

近年来,AI生成PPT已经成为AI+办公领域的热门应用,尤其是中文大语言模型如DeepSeekKimi的加入,更是让这一流程变得轻松便捷。然而,对于很多非技术用户来说,调用API过于麻烦,甚至还涉及编程环境配置,这劝退了一大批人。

本篇文章介绍一个纯网页操作的方案,零代码、零API、纯手动也能完成全流程AI生成PPT,从内容到排版一气呵成,适合所有用户,办公党、学生党都能无痛上手。


2. 所需工具

工具网址功能
DeepSeekhttps://deepseek.com生成PPT内容大纲和正文
Kimihttps://kimi.moonshot.cn一键排版生成PPT

3. 全流程图解

DeepSeek生成内容大纲 + 详细正文  →  Kimi PPT助手一键排版  →  下载PPT文件

4. 操作步骤

Step 1:内容生成(DeepSeek)

打开 DeepSeek官网,并通过对话方式生成PPT内容。

示例提问

“你是一个学生,要在组会上汇报小目标检测的实验,请按markdown格式输出完整汇报内容。”

DeepSeek示例输出

# 小目标检测实验汇报

## 1. 研究背景
小目标检测是计算机视觉中的重要任务,广泛应用于监控、自动驾驶、医学影像等领域。由于小目标在图像中像素占比低、特征不明显,检测难度较大。本次实验旨在探索小目标的检测方法,并评估不同模型的效果。

---

## 2. 实验目标
- 探索适用于小目标检测的深度学习模型。
- 对比不同模型在小目标检测任务中的性能。
- 分析模型在小目标检测中的优缺点。

---

## 3. 数据集
- **数据集名称**: VOC2007 + COCO2017 小目标子集
- **数据集特点**:
  - 小目标占比高(目标尺寸小于 32x32 像素)。
  - 类别多样,背景复杂。
- **数据预处理**:
  - 图像缩放到统一尺寸(640x640)。
  - 数据增强:随机裁剪、水平翻转、颜色抖动。

---

## 4. 实验方法
### 4.1 模型选择
- **YOLOv5**: 以速度和精度平衡著称,适合实时检测。
- **Faster R-CNN**: 经典的两阶段检测模型,精度较高。
- **SSD**: 单阶段检测模型,速度快但小目标检测效果较差。
- **改进模型**: 在 YOLOv5 基础上增加 FPN(特征金字塔网络)以提升小目标检测能力。

### 4.2 实验设置
- **硬件环境**: NVIDIA GTX 1080Ti GPU
- **框架**: PyTorch
- **训练参数**:
  - Batch Size: 16
  - Epochs: 100
  - 学习率: 初始 0.001,使用余弦退火策略

---

## 5. 实验结果
### 5.1 性能指标
| 模型          | mAP(小目标) | 推理速度(FPS) | 参数量(M) |
|---------------|--------------|----------------|------------|
| YOLOv5        | 0.52         | 45             | 7.2        |
| Faster R-CNN  | 0.58         | 12             | 136.8      |
| SSD           | 0.47         | 60             | 26.8       |
| YOLOv5+FPN    | 0.61         | 38             | 8.5        |

### 5.2 可视化结果
- **YOLOv5+FPN** 在小目标检测中表现最好,能够准确检测到更多小目标。
- **SSD** 速度最快,但漏检率较高。
- **Faster R-CNN** 精度较高,但推理速度较慢。

---

## 6. 分析与讨论
- **YOLOv5+FPN** 通过引入 FPN 提升了特征融合能力,显著改善了小目标检测效果。
- **Faster R-CNN** 虽然精度较高,但计算量大,不适合实时检测场景。
- **SSD** 尽管速度快,但其对小目标的检测能力较弱,适合目标尺寸较大的场景。

---

## 7. 未来工作
- 尝试更先进的模型架构,如 Transformer-based 检测器。
- 探索数据增强策略,进一步提升小目标检测性能。
- 在更大规模和多样性的数据集上进行验证。

---

## 8. 总结
本次实验通过对比不同模型在小目标检测中的表现,发现 YOLOv5+FPN 在精度和速度上达到了较好的平衡。未来将继续优化模型,提升小目标检测的鲁棒性和泛化能力。

---

## 9. Q&A
欢迎提问与讨论!


Step 2:复制内容,粘贴到Kimi

  1. 打开 Kimi官网
  2. 选择“Kimi+”功能
    在这里插入图片描述
  3. 选择“PPT助手”
    在这里插入图片描述
  4. 将DeepSeek生成的markdown内容粘贴到对话框
    在这里插入图片描述
  5. 一键生成PPT
    在这里插入图片描述
    在这里插入图片描述在这里插入图片描述

Step 3:下载PPT

Kimi生成的PPT不仅排版美观,而且结构清晰,直接可以下载使用,非常适合应对临时需求,如课程作业、项目汇报、组会分享等场景。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. DeepSeek内容生成示例

💡 示例:小目标检测实验汇报

# 小目标检测实验汇报

## 1. 研究背景
小目标检测是计算机视觉的重要方向,广泛用于监控、自动驾驶、医学影像等。由于小目标像素占比低,特征不明显,检测难度大。

## 2. 实验目标
- 探索小目标检测的有效模型。
- 对比不同模型的检测性能。
- 分析优缺点并总结经验。

## 3. 数据集
- VOC2007 + COCO2017小目标子集
- 小目标尺寸 < 32x32像素
- 数据增强包括随机裁剪、颜色抖动等

## 4. 实验方法
- 模型:YOLOv5、Faster R-CNN、SSD、YOLOv5+FPN
- 训练参数:batch=16,epoch=100,学习率余弦退火
- 评估指标:mAP、FPS、参数量

## 5. 结果分析
| 模型 | mAP(小目标) | FPS | 参数量 |
|---|---|---|---|
| YOLOv5 | 0.52 | 45 | 7.2M |
| Faster R-CNN | 0.58 | 12 | 136.8M |
| SSD | 0.47 | 60 | 26.8M |
| YOLOv5+FPN | 0.61 | 38 | 8.5M |

## 6. 结论
- YOLOv5+FPN效果最好
- Faster R-CNN精度高但慢
- SSD快但漏检多
- FPN对小目标检测提升明显

6. Kimi生成PPT效果预览

在这里插入图片描述


7. 总结

优势说明
0代码门槛无需Python/调用API,纯网页操作
内容+排版一站式DeepSeek负责内容,Kimi负责排版
效果美观PPT结构清晰,模板美观大方
灵活可控内容随时调整,兼顾灵感与效率

8. 加分项:DeepSeek本地化部署(选学)

如果担心网站不稳定,或者想要“私有化使用”,还可以参考:


9. 结尾彩蛋

📌 这种全程AI自动化生成PPT的能力,不仅适合学生党“摸鱼赶ddl”,也适合职场党高效完成周报、汇报、提案等任务。

💬 想看更多AI办公技巧?评论区告诉我你的需求!


如果你觉得这个教程实用,欢迎点赞+收藏+分享,带更多朋友一起高效办公~

### 如何使用 DeepSeekKimi 自动生成 PPT #### 准备工作 为了利用 DeepSeekKimi 工具自动生成 PPT,需先访问 DeepSeek 官网并准备好具体需求描述。确保所提需求详尽明了,以便获得高质量的生成内容[^1]。 #### 创建 PPT 内容 进入 DeepSeek 官方网站后,在指定区域输入关于所需 PPT 的详细要求。例如,如果希望创建一份有关新能源汽车发展趋势的报告,则应提供具体的主题方向、期望包含的数据类型以及其他任何有助于提高最终产品质量的信息[^4]。 ```python # 示例:向 DeepSeek 输入请求 request = """ 请给我生成一份新能源汽车发展趋势的报告PPT内容包括大纲目录、行业最新研究报告、上下游关系, 做出分析和建议,报告需要有数据支撑, 具有实现价值,考虑呈现方式,保证格式正确。 """ ``` 提交上述信息之后,等待一段时间让 DeepSeek 处理请求并生成相应的内容框架及素材[^2]。 #### 整合与生成 一旦收到由 DeepSeek 提供的结果,将其复制下来,并前往 Kimi 平台进行下一步操作。将刚刚获取的文字材料粘贴至 Kimi 中对应的编辑框内;随后通过简单的设置调整(如选择模板样式),即可一键完成整个演示文档的设计与布局优化过程[^3]。 最后一步是从 Kimi 下载已编排好的 PPT 文件,对其进行必要的个性化修改和完善,从而得到满足个人或团队展示需求的理想版本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

heromps

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值