MIT线性代数笔记六 列空间和零空间

  本节继续研究子空间,特别是矩阵的列空间(column space)和零空间(nullspace)。

  列空间的符号表示为C(A),零空间的符号表示为N(A)。

1. 向量空间和子空间(复习)

  向量空间指的是向量的线性运算在该空间中是封闭的。

  向量空间是对于线性运算封闭的向量集合。即对于空间中的任意向量 v v v w w w,其和 v + w v+w v+w 和数乘 c v cv cv 必属于该空间;换而言之对于任何实数 c c c d d d,线性组合 c v + d w cv+dw cv+dw必属于该空间。

   R 1 R^1 R1 R 2 R^2 R2 R 3 R^3 R3……都是重要的向量空间, R n R^n Rn 代表的空间包含所有具有 n 个分量的向量。其中字母 R R R 表明分量均为实数 。

  子空间为包含于向量空间内的一个向量空间。 它是原向量空间的一个子集,而且本身也满足向量空间的要求。 但是“子空间”和“子集”的概念有区别,所有元素都在原空间之内就可称之为子集,但是要满足对线性运算封闭的子集才能成为子空间。

  如果 P P P是平面, L L L是直线,那么可知:

   P ∪ L P \cup L PL(union)通常并不是 R 3 R^3 R3 的子空间。

   P ∩ L P\cap L PL(intersection)是 R 3 R^3 R3子空间的特例——0 空间,只有零向量。

  任意子空间 S S S T T T的交集都是子空间,可以通过 S S S T T T本身对线性组合封闭来证明。、

2. 列空间 Column space

  矩阵 A A A 的列空间 C ( A ) C(A) C(A)是其列向量的所有线性组合所构成的空间。

  求解 A x = b Ax=b Ax=b 的问题,对于给定的矩阵 A A A,对于任意的 b b b 都能得到解么?

A = [ 1 1 2 2 1 3 3 1 4 4 1 5 ] A=\left[ \begin{array} { l l l } { 1 } & { 1 } & { 2 } \\ { 2 } & { 1 } & { 3 } \\ { 3 } & { 1 } & { 4 } \\ { 4 } & { 1 } & { 5 } \end{array} \right] A= 123411112345

  显然并不是所有的 b b b 都能保证 A x = b Ax=b Ax=b 有解, 因为它有 4 个线性方程而只有3个未知数,矩阵 A A A列向量(3个列向量)的线性组合无法充满 R 4 R^4 R4,因此如果 b b b不能被表示为 A A A 列向量的线性组合时,方程是无解的。只有当 b b b在矩阵 A A A 列空间 C ( A ) C(A) C(A)里时, x x x 才有解。

  列空间是非常重要的概念,它能告诉方程组何时是有解的。

  对于我们所给定的矩阵 A A A,由于列向量不是线性无关的,第三个列向量为前两个列向量之和,所以尽管有 3 个列向量,但是只有 2 个对向量空间有贡献,这两个列向量称为是pivot columns。矩阵 A A A的列空间为 R 4 R^4 R4 内的一个二维子空间。

3. 零空间 Nullspace

  矩阵 A 的零空间 N(A)是指满足 A x = 0 Ax=0 Ax=0的所有解的集合。对于所给定这个矩阵 A A A,其列向量含有 4 个分量,因此列空间是空间 R 4 R^4 R4 的子空间, x x x 为含有 3 个分量的向量,故矩阵 A A A 的零空间是 R 3 R^3 R3 的子空间。 对于 m ∗ n m*n mn 矩阵,列空间为 R m R^m Rm 的子空间,零空间为 R n R^n Rn空间的子空间。

  本例中矩阵 A 的零空间 N ( A ) N(A) N(A)为包含 [ 1 1 − 1 ] \left[ \begin{array} { c } { 1 } \\ { 1 } \\ { - 1 } \end{array} \right] 111 的任何倍数的集合,因为很容易看到第一列向量(1)和第二列向量(1)相加减去第三列向量(-1)为零。此零空间为 R 3 R^3 R3中的一条直线

  为了验证 A x = 0 Ax=0 Ax=0 的解集是一个向量空间, 我们可以检验它是否对线性运算封闭。若 v v v w w w为解集中的元素,则有:

A ( v + w ) = A v + A w = 0 + 0 = 0 A(v+w)=Av+Aw=0+0=0 A(v+w)=Av+Aw=0+0=0

A ( c v ) = c A v = 0 A(cv)=cAv=0 A(cv)=cAv=0

  因此可证 N ( A ) N(A) N(A)确实是 R n R^n Rn 空间的一个子空间。

  b 值的影响 Other values of b,若方程变为:
[ 1 1 2 2 1 3 3 1 4 4 1 5 ] [ x 1 x 2 x 3 ] = [ 1 2 3 4 ] \left[ \begin{array} { l l l } { 1 } & { 1 } & { 2 } \\ { 2 } & { 1 } & { 3 } \\ { 3 } & { 1 } & { 4 } \\ { 4 } & { 1 } & { 5 } \end{array} \right] \left[ \begin{array} { l } { x _ { 1 } } \\ { x _ { 2 } } \\ { x _ { 3 } } \end{array} \right] = \left[ \begin{array} { l } { 1 } \\ { 2 } \\ { 3 } \\ { 4 } \end{array} \right] 123411112345 x1x2x3 = 1234

  则其解集不能构成一个子空间。零向量并不在这个集合内。解集是空间 R 3 R^3 R3 内过 [ 1 0 0 ] \left[ \begin{array} { l } { 1 } \\ { 0 } \\ { 0 } \end{array} \right] 100 [ 0 − 1 1 ] \left[ \begin{array} { l } { 0 } \\ { -1 } \\ { 1 } \end{array} \right] 011 的一个平面,但是并不穿过原点 [ 0 0 0 ] \left[ \begin{array} { l } { 0 } \\ { 0 } \\ { 0 } \end{array} \right] 000

  本讲给出了关于矩阵的两种子空间,同时给出了两种构造子空间的方法。对于列空间,它是由列向量进行线性组合张成的空间;而零空间是从方程组出发,通过让 x x x 满足特定条件而得到的子空间。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

herosunly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值