stranger_man的博客

写的了代码,玩的起艺术

优秀算法博客汇总

决策树 - 参考:decision Tree(Python 实现) http://blog.csdn.net/dream_angel_z/article/details/45965463 SVM 支持向量机 - 参考:pluskid 支持向量机三重境界 http://blog.pluski...

2018-10-13 21:27:58

阅读数 316

评论数 0

2 Features Engineering for Machine Learning中文翻译系列(二)

来自于github项目,点击查看 二、简单数字的奇特技巧 在深入研究诸如文本和图像这样的复杂数据类型之前,让我们先从最简单的数字数据开始。它们可能来自各种来源:地理位置或人、购买的价格、传感器的测量、交通计数等。数字数据已经是数学模型容易消化的格式。这并不意味着不再需要特征工程。好的特征不仅代表数...

2018-10-21 21:33:20

阅读数 151

评论数 0

1 Features Engineering for Machine Learning中文翻译系列(一)

来自于github项目,点击查看 一、引言 机器学习将数据拟合到数学模型中来获得结论或者做出预测。这些模型吸纳特征作为输入。特征就是原始数据某方面的数学表现。在机器学习流水线中特征位于数据和模型之间。特征工程是一项从数据中提取特征,然后转换成适合机器学习模型的格式的艺术。这是机器学习流水线关键的一...

2018-10-21 21:00:19

阅读数 337

评论数 0

3.MapReduce

一、结构 完成一个MapReduce过程需要以下几步,input、map、combine(可选)、shuffle、reduce和output。其中shuffle居于核心的位置。下面逐一来看这些过程。 二、input & map 源码分...

2018-10-12 08:50:54

阅读数 211

评论数 0

4.Hbase简介

在学习Hbase的过程中,查找到了一篇特别好的入门博客。但发现博客中介绍的hbase版本过低,还有一些错误,特别复制过来做一下更新。查看原文 简介 逻辑视图 物理存储 系统架构 关键算法 一、简介 1.history started by chad walters and ...

2018-10-11 15:37:25

阅读数 23

评论数 0

2.HDFS

Hadoop文件系统 HDFS HDFS工作流程 HDFS数据输入输出流程分析 一、Hadoop文件系统    &nb...

2018-09-21 20:16:20

阅读数 54

评论数 0

1、hadoop安装及其文件结构

Hadoop安装     安装过程亲测有效,在安装过程中根据自己的喜好和实际环境更改部分内容即可。 1.安装jdk a)下载jdk-8u65...

2018-09-20 15:42:17

阅读数 83

评论数 0

深入理解正则化

综述     刚开始接触机器学习就提到了正则化,一直没有把里面东西搞清楚。今天决定写一篇关于正则...

2018-09-05 21:58:47

阅读数 778

评论数 0

概率和统计学知识汇总

综述   本文总结了机器学习中经常遇到的概率统计中的一些基础概念,在平时经常遇到写下来供自己以后查阅。 清单 样本均值 数学期望 期望 方差 样本方差 协方差 最大似然与最大后验 共轭先验 偏差和方差 样本均...

2018-09-02 10:20:33

阅读数 4330

评论数 0

SVR-支持向量机的回归应用

支持向量机的回归应用 本文的思想延续自 基于核方法的支持向量机的思想 ,感兴趣的同学可以移步。 本文的公式推导核部分图片截取自PRML,在此表示感谢! 综述 目标函数确定 增加松弛变量 求解 总结 综述   &a...

2018-08-31 09:26:17

阅读数 2228

评论数 0

11正交矩阵和Gram-Schmidt正交化法

转载自:https://blog.csdn.net/huang1024rui/article/details/69568991 这是关于正交性最后一讲,已经知道正交空间,比如行空间和零空间,今天主要看正交基和正交矩阵 1.标准正交基与正交矩阵 1.定义标准正交向量(orthonormal...

2018-07-01 17:34:33

阅读数 1403

评论数 1

10投影矩阵和最小二乘

转载自:https://blog.csdn.net/huang1024rui/article/details/69568991 上一讲中,我们知道了投影矩阵P=A(ATA)−1ATP=A(ATA)−1ATP=A(A^{T}A)^{-1}A^{T},PbPbPb将会把向量投影在A的列空间中。即只要...

2018-07-01 11:18:25

阅读数 67

评论数 0

9子空间的投影和Ax=b

转载自:https://blog.csdn.net/huang1024rui/article/details/69258689 此课老师说要名垂千古,就当作重中之重吧,讲投影,怎样投影,为什么要投影到其他子空间。 引子: 上一讲中遇到Ax=bAx=bAx=b无解的时候提到,当其无解的时候,我...

2018-06-30 16:21:26

阅读数 356

评论数 0

8正交向量与子空间

前面还是图和网络的内容,感觉与自己所求相差较多,可以参考:https://blog.csdn.net/huang1024rui/article/details/68951624 第十四课时:正交向量与子空间 本文讲解什么是向量的正交,什么是子空间的正交,什么是基的正交。 正交向量 ...

2018-06-30 11:35:06

阅读数 55

评论数 0

7四个基本子空间

假设AAA是m×nm×nm×n,列空间C(A)C(A)C(A),零空间N(A)N(A)N(A),行空间C(AT)C(AT)C(A^{T}),A转置的零空间N(AT)N(AT)N(A^{T})(通常叫左零空间),研究这四个基本子空间及其关系是线性代数的核心内容。我们从上一讲中的基、维数对这四个空间进...

2018-06-30 10:02:44

阅读数 487

评论数 0

Untitled2

学习什么是”线性相关性“,“线性无关”,什么是由向量组所“生成”的空间,什么是向量空间的“基”,什么是子空间的“维数”。 由上一讲可知:Ax=bAx=bAx=b,其中Am,nAm,nA_{m,n}.则Ax=0Ax=0Ax=0存在非0解,因为A消元后存在自由列。 1.向量组线性相关性 线性无关...

2018-06-29 10:58:03

阅读数 96

评论数 0

6求解Ax=b:可解性和解的结构

第八课时:求解Ax=b:可解性和解的结构 本课时的目标是Ax=b,可能有解,也可能无解,需要通过需要消元才知道,有解的话是唯一解还是很多解。 1.Ax=b 首先,继续上次课的例子: 通过以上推导可以看到,如果方程组有解,必须满足b3=b1+b2b3=b1+b2b_{3}=b_{...

2018-06-29 09:54:54

阅读数 1493

评论数 0

5求解Ax=0:主变量、特解

第七课时:求解Ax=0:主变量、特解 本课时将讲解如何计算那些空间中的向量,从概念定义转向算法,求解Ax=0的算法是怎样的,即如何求解零空间。 消元法解Ax=0 消元过程中,方程通过加减消元本质上是线性变换,解是不会改变的。实际上,消元法改变了系数矩阵的列空间,而不改变系数矩阵的行空间。 ...

2018-06-29 09:13:57

阅读数 718

评论数 0

4列空间和零空间

本部分博客复制https://blog.csdn.net/suqier1314520/article/list/3?t=1的文章,因为其图片显示不出来,做一下丰富。 第六课时:列空间和零空间 特别关注矩阵的列空间和零空间 回忆什么是向量空间:就是许多向量,对加法和数乘运算封闭,原点本...

2018-06-28 16:35:07

阅读数 394

评论数 0

3乘法和逆矩阵

本部分博客复制https://blog.csdn.net/suqier1314520/article/list/3?t=1的文章,因为其图片显示不出来,做一下丰富。 第三课时:乘法与逆矩阵 本课时先讲解矩阵乘法运算,然后是逆矩阵 一、矩阵乘法:5种方法 ![这里写图片描述](https...

2018-06-28 15:52:33

阅读数 187

评论数 0

提示
确定要删除当前文章?
取消 删除