四边形不等式学习笔记

四边形不等式是动态规划中用于优化时间复杂度的重要工具,尤其在区间类问题中。其核心在于通过特定的不等式条件确保决策点的单调性,从而减少状态转移时的计算量。

定义

对于定义在整数上的函数 w(i,j),若对任意 i ≤ i′ ≤ j ≤ j′,满足:

w(i,j) + w(i' , j') \leq w(i , j') + w(i' , j)

则称 w 满足四边形不等式。若不等式反向,则称满足凹性四边形不等式。

应用场景

  1. 区间动态规划:如石子合并、最优二叉搜索树、矩阵链乘法等。

  2. 1d/1d动态规划:形如 dp[i] = min (dp[j] + w(j , i) )  (j < i)。

优化原理

当函数 w 满足四边形不等式时,最优决策点具有单调性:

  • 在区间DP中,若 K[i][j]表示区间 [i,j] 的最优分割点,则满足:

    这使得计算每个状态时只需在限定范围内搜索,时间复杂度从 O(n^{3}) 降至 O(n^{2})

验证方法

通过代数验证 w 是否满足四边形不等式。例如:

  • 区间和 w(i , j ) = \sum_{k = i}^{j} a_{k}满足等式,仍可优化。

  • 平方函数 w(i , j ) = (j - i)^{2} 严格满足不等式。

相关优化算法

  • Knuth优化:用于最优二叉搜索树,利用决策点单调性。

  • 分治法:处理1d/1d问题,将时间复杂度从 O(n^{2})降至 O(n log n)

总结

四边形不等式通过分析代价函数的性质,确保动态规划中决策点的有序性,从而大幅减少无效计算。其应用需结合具体问题验证条件,并选择合适的优化策略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值