自然界一直是无数复杂问题的解决方案之源,也是许多元启发式算法的灵感之泉。自然选择和适者生存法则不仅奠定了自然界万物的生存基础,也引发了早期元启发式算法的诞生。在自然界的无数生物之间,交流方式多种多样,其中,萤火虫则以其独特的闪烁眨眼方式进行沟通。
不同于常见的昆虫,萤火虫约有2000种不同的物种,每一种都拥有其独特的闪烁模式。它们通过发出特定图案的短暂闪烁来进行交流。这一神奇的现象,被称为生物发光,是一种精致的生化过程的产物。据认为,这种闪烁行为主要用于招偶和引诱潜在的猎物。有些热带萤火虫甚至能同步它们的闪烁,成为生物自组织现象的一个生动例子。此外,光亮的强度作为与其光源距离的函数,遵循平方反比定律,因此来自萤火虫的闪烁光线会刺激它周围的同伴做出反应。
通过深入探索这些奇妙的生物现象,人们发现了两种受萤火虫行为启发的种群优化算法:萤火虫算法和萤火虫群优化(GSO)算法。两者之间的主要区别在于后者是无翅的生物。本文将专注于第一种类别,即萤火虫算法。
2. 萤火虫算法的深入解读
**定义与创始:**萤火虫算法(F-算法)是由X-Sh. Yang于2007年在英国剑桥大学提出的。自从它的诞生,就立即引起了优化研究领域的广泛关注。作为群体智能算法家族的一部分,萤火虫算法近年来在解决各类优化问题方面展现了令人惊叹的能力,无论是连续优化问题还是离散优化问题。
**工作原理:**萤火虫算法灵感来自真实世界的萤火虫闪烁特性,并遵循三条核心规则:
所有萤火虫都会朝着更有吸引力和更明亮的对应物移动。
萤火虫的吸引力与其亮度成正比,但由于空气对光线的吸收作用,随着距离的增加,亮度会逐渐降低。因此,不太亮的萤火虫会朝着较亮的萤火虫方向移动。若周围无更亮的对象,萤火虫则会随机移动。
萤火虫的亮度或光线强度由问题的目标函数的值来决定。
**算法执行:**在算法开始时,所有萤火虫都被随机分散在整个搜索空间中。然后,算法通过以下两个阶段来确定最优解:
**光线强度的变化:**萤火虫在其当前位置的亮度反映了其适应性值,它会朝着更具吸引力的萤火虫方向移动。
**位置改变:**萤火虫会通过观察周围萤火虫的光线强度来调整其位置。
总而言之,萤火虫算法通过模拟自然界的萤火虫行为,为优化问题提供了一种独特且高效的解决方案。它的创造性设计和实用价值不仅促进了科学研究的进展,还为人们洞察自然界的奥秘打开了一扇新窗。