洛谷P1226 快速幂 传送门
这道题最暴力的写法是while循环p
,但是当p
大的时候就会TLE。然后就了解到了快速幂
。
快速幂:顾名思义,快速幂就是快速算底数的n次幂。其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高。
不得不说,二进制是一个很神奇的东西
该性质在二进制枚举中已经有所体现,那么在快速幂中有什么作用呢?
我们都知道 2n·2m=2n+m,那么联系到上述的二进制性质,我们就可以得到2n=2a·2b·…·2m(a+b+…+m=n),这和之前的2n=21·21·…·21(n个1)相比,(从O(n)优化到O(log n)) 显然快了很多。
另外&
的应用(在二进制枚举中也有体现、转载)
关于 b & 1:
“&”美名曰“按位与”。
x & y 是二进制 x 和 y 的每一位分别进行“与运算”的结果。
与运算,即两者都为 1 时才会返回 1,否则返回 0。
二进制
b = 1011
1 = 0001
b&1 = 0001
因为 1(二进制)的前面几位全部都是 0,
所以只有 b 二进制最后一位是 1 时,b & 1 才会返回 1。
挺巧妙的,并且很快。)
快速幂模板(来自zj学长):
ll quick(ll a, ll b, ll c)
{
ll res = 1;
while (b)
{
if (b & 1)
res = (res * a) % c;
a = (a * a) % c;
b >>= 1;
}
return res % c;
}
int main()
{
ll a, b, c;
cin >> a >> b >> c;
cout << a << '^' << b << ' ' << "mod" << ' ' << c << '=' << quick(a, b, c) << endl;
}