在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。
考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x1≠x4,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。
现在给出一些约束满足问题,请分别对它们进行判定。
Input
输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。
对于每个问题,包含若干行:
第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。
接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若e=0,则该约束条件为xi≠xj。
Output
输出文件包括t行。
输出文件的第k行输出一个字符串“YES”或者“NO”(不包含引号,字母全部大写),“YES”表示输入中的第k个问题判定为可以被满足,“NO”表示不可被满足。
Sample Input
2
2
1 2 1
1 2 0
2
1 2 1
2 1 1
Sample Output
NO
YES
Hint
在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。
在第二个问题中,约束条件为:x1=x2,x2=x1。这两个约束条件是等价的,可以被同时满足。
1≤n≤1000000
1≤i,j≤1000000000
题目大意
给你n个条件(xi和xj是否相等),让你判断有没有出现矛盾的条件。
求解
利用并查集的思想,把相等的都先放在一堆,再考虑不相等条件中的xi和xj有没有在同一堆中。
另外,数据范围1e9 ,需要进行离散化。
代码
/*
* @Author: hesorchen
* @LastEditTime: 2020-04-21 17:20:56
* @1 : ┌───┐ ┌───┬───┬───┬───┐ ┌───┬───┬───┬───┐ ┌───┬───┬───┬───┐ ┌───┬───┬───┐
* @2 : │Esc│ │ F1│ F2│ F3│ F4│ │ F5│ F6│ F7│ F8│ │ F9│F10│F11│F12│ │P/S│S/L│P/B│ ┌┐ ┌┐ ┌┐
* @3 : └───┘ └───┴───┴───┴───┘ └───┴───┴───┴───┘ └───┴───┴───┴───┘ └───┴───┴───┘ └┘ └┘ └┘
* @4 : ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───────┐ ┌───┬───┬───┐ ┌───┬───┬───┬───┐
* @5 : │~ `│! 1│@ 2│# 3│$ 4│% 5│^ 6│& 7│* 8│( 9│) 0│_ -│+ =│ BacSp │ │Ins│Hom│PUp│ │N L│ / │ * │ - │
* @6 : ├───┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─────┤ ├───┼───┼───┤ ├───┼───┼───┼───┤
* @7 : │ Tab │ Q │ W │ E │ R │ T │ Y │ U │ I │ O │ P │{ [│} ]│ | \ │ │Del│End│PDn│ │ 7 │ 8 │ 9 │ │
* @8 : ├─────┴┬──┴┬──┴┬──┴┬──┴┬──┴┬──┴┬──┴┬──┴┬──┴┬──┴┬──┴┬──┴─────┤ └───┴───┴───┘ ├───┼───┼───┤ + │
* @9 : │ Caps │ A │ S │ D │ F │ G │ H │ J │ K │ L │: ;│" '│ Enter │ │ 4 │ 5 │ 6 │ │
* @10 : ├──────┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴────────┤ ┌───┐ ├───┼───┼───┼───┤
* @11 : │ Shift │ Z │ X │ C │ V │ B │ N │ M │< ,│> .│? /│ Shift │ │ ↑ │ │ 1 │ 2 │ 3 │ │
* @12 : ├─────┬──┴─┬─┴──┬┴───┴───┴───┴───┴───┴──┬┴───┼───┴┬────┬────┤ ┌───┼───┼───┐ ├───┴───┼───┤ E││
* @13 : │ Ctrl│ │Alt │ Space │ Alt│ │ │Ctrl│ │ ← │ ↓ │ → │ │ 0 │ . │←─┘│
* @14 : └─────┴────┴────┴───────────────────────┴────┴────┴────┴────┘ └───┴───┴───┘ └───────┴───┴───┘
*/
#include <map>
#include <set>
#include <list>
#include <queue>
#include <deque>
#include <cmath>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define endl '\n'
#define PI cos(-1)
#define ll long long
#define INF 0x3f3f3f3f
#define mod 1000000009
#define lowbit(abcd) (abcd & (-abcd))
ll a[1000100];
ll b[1000100];
ll c[1000100];
ll discretization[2000100], ct = 1;
ll father[2000100];
ll find(int x)
{
if (father[x] == x)
return x;
return father[x] = find(father[x]);
}
void mix(int x, int y)
{
ll fx = find(x);
ll fy = find(y);
if (fx != fy)
father[fx] = fy;
}
void intt()
{
for (int i = 1; i <= 2000000; i++)
father[i] = i;
}
int main()
{
int t;
cin >> t;
while (t--)
{
ll n;
cin >> n;
intt();
ct = 1;
for (int i = 1; i <= n; i++)
{
scanf("%lld%lld%lld", &a[i], &b[i], &c[i]);
discretization[ct++] = a[i];
discretization[ct++] = b[i];
}
sort(discretization + 1, discretization + ct); //离散化
ll end = unique(discretization + 1, discretization + ct) - discretization;
for (int i = 1; i <= n; i++)
{
a[i] = lower_bound(discretization + 1, discretization + end, a[i]) - discretization;
b[i] = lower_bound(discretization + 1, discretization + end, b[i]) - discretization;
}
int ff = 1;
for (int i = 1; i <= n; i++)
{
if (c[i])
{
if (find(a[i]) != find(b[i]))
mix(a[i], b[i]);
}
}
for (int i = 1; i <= n; i++)
{
if (!c[i])
{
if (find(a[i]) == find(b[i]))
ff = 0;
}
}
if (ff)
cout << "YES\n";
else
cout << "NO\n";
}
return 0;
}