uva10739经典动态规划

题目

给出一个字符串,长度小于一千。你可以执行三种操作:

  • 删除一个字符
  • 增加一个字符
  • 修改一个字符

问,最少执行多少次操作可以使原字符串变成回文字符串。

解题思路

d p [ i ] [ j ] dp[i][j] dp[i][j]表示将区间 [ i , j ] [i,j] [i,j]修改成回文串的最小花费。

由于 d p dp dp的性质,当求 d p [ i ] [ j ] dp[i][j] dp[i][j]时, d p [ i + 1 ] [ j − 1 ] dp[i+1][j-1] dp[i+1][j1] d p [ i + 1 ] [ j ] dp[i+1][j] dp[i+1][j] d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1]都已经知道了。

如果 a [ i ] = = a [ j ] a[i]==a[j] a[i]==a[j],那么 d p [ i ] [ j ] = d p [ i + 1 ] [ j − 1 ] dp[i][j]=dp[i+1][j-1] dp[i][j]=dp[i+1][j1]
否则,也就是 a [ i ] ! = a [ j ] a[i]!=a[j] a[i]!=a[j],有五种方案:

  • 删除 a [ i ] a[i] a[i],有 d p [ i ] [ j ] = d p [ i + 1 ] [ j ] + 1 dp[i][j]=dp[i+1][j]+1 dp[i][j]=dp[i+1][j]+1
  • 删除 a [ j ] a[j] a[j],有 d p [ i ] [ j ] = d p [ i ] [ j − 1 ] + 1 dp[i][j]=dp[i][j-1]+1 dp[i][j]=dp[i][j1]+1
  • 增加一个和 a [ j ] a[j] a[j]相同的字符 a [ i ] a[i] a[i],有 d p [ i ] [ j ] = d p [ i + 1 ] [ j ] + 1 dp[i][j]=dp[i+1][j]+1 dp[i][j]=dp[i+1][j]+1
  • 增加一个和 a [ i ] a[i] a[i]相同的字符 a [ j ] a[j] a[j],有 d p [ i ] [ j ] = d p [ i ] [ j − 1 ] + 1 dp[i][j]=dp[i][j-1]+1 dp[i][j]=dp[i][j1]+1
  • a [ i ] a[i] a[i]修改成 a [ j ] a[j] a[j] 或 将 a [ j ] a[j] a[j]修改成 a [ i ] a[i] a[i],有 d p [ i ] [ j ] = d p [ i + 1 ] [ j − 1 ] + 1 dp[i][j]=dp[i+1][j-1]+1 dp[i][j]=dp[i+1][j1]+1

可以发现删除和增加操作转移方程一样,因此总共三种转移方式。

代码

#include <bits/stdc++.h>
using namespace std;

int dp[1010][1010]; //dp[i][j]表示将区间[i,j]修改成回文串的最小花费
char s[1010];
int CA = 0;

void solve()
{
    scanf("%s", s + 1);
    int n = strlen(s + 1);
    memset(dp, 0x3f3f3f3f, sizeof dp);
    for (int i = 1; i <= n; i++)
        dp[i][i] = 0;
    for (int len = 2; len <= n; len++)
    {
        for (int l = 1; l + len - 1 <= n; l++)
        {
            int r = l + len - 1;
            if (s[l] == s[r])
            {
                if (len == 2)
                    dp[l][r] = 0;
                else
                    dp[l][r] = dp[l + 1][r - 1];
            }
            else
            {
                if (len == 2)
                    dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]) + 1;
                else
                    dp[l][r] = min(dp[l + 1][r], min(dp[l][r - 1], dp[l + 1][r - 1])) + 1;
            }
        }
    }
    printf("Case %d: %d\n", ++CA, dp[1][n]);
}
int main()
{
    int t;
    cin >> t;
    while (t--)
        solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hesorchen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值