首先简单介绍下什么是poi。poi即为points of interest,比如小区,汽车站,火车站等等,这些都是poi。
随着移动设备的快速增长和基于位置的社交网络的扩张,会产生大量的用户移动数据。在这种背景下,将用户和poi(points of interest)关联起来,并对用户推荐可能感兴趣的poi或者对某个poi推荐高质量的用户变得非常有意义。比如,在一个城市旅游时,通常会在位置社交网络中搜索比较有意思的poi。
poi推荐的挑战在于用户行为比较稀疏。一般可以基于朋友和附近的poi进行推荐,但是,这种方法无法考虑不同的朋友所带来的影响。为了解决这个问题,学者基于上下文,图模型以及注意力提出了一种新的模型。该模型首先利用两个上下文注意力网络模型来学习不同的朋友所带来的影响和附近不同的poi所带来的影响。同时,构建一个对偶注意力网络,来学习某个用户的上下文poi之间的相互影响和某个poi的上下文用户之间的相互影响。利用多层感知器来估计某个用户到达某个poi的概率。
在电影推荐或者电子商务中,对于某部电影或者某件商品有比较明确的评价,并且内容信息也比较丰富。但是,在poi推荐中,信息比较稀疏,并且只有积极的反馈,即某个用户到过某个poi。
在上下文图中,某个用户的偏好可以基于该用户到过的poi来建模,某个poi的访问画像可以利用到访的用户来建模。作者提出的基于注意力的上下文图模型能够有效的融合位置社交网路欧中不同的上下文信息。注意力机制的基本假设在于,只有一部分特征具有决定性作用。
上下文注意力图模型构建了三个上下文图,一个用户友谊上下文图,一个poi近邻上下文图,一个用户poi上下文图。在这些上下文图中将用户和poi表示成注意力隐式向量,这些向量都是对嵌入的相关上下文节点的加权和得到的。该模型还构建了两种注意力网络,一种上下文注意力网络,一种对偶注意力网络,这两种网络用来计算不同节点之间的权重。
下面是三个图的示例。
假设用户集合为
poi集合为
用户poi矩阵为
表示用户
到访了poi
否则
访问过的poi集合记为
访问过的用户集合记为
则poi推荐即为
给定某个用户
poi集合
用户poi矩阵
返回一个poi列表
以用户
访问某个poi的预测概率
降序排列。
下面是用户之间的相似度分布和poi之间的相似度分布。
整体网络结构如下
下面是精准率比较
下面是召回率比较
下面是命中率比较
下面是参数比较,其中D是嵌入单元的个数,H是网络的层数,d是注意力单元数目,k是最近邻的范围。
参考资料
Siyuan Zhang, Hong Cheng