- 博客(6)
- 收藏
- 关注
原创 5/100 Slim-neck by GSConv: A better design paradigm of detectorarchitectures for autonomous vehicle
表7,消融实验的对比。的计算成本是SC的50%,但对于模型学习能力的贡献后者更好,在GSConv基础上,引入了GS bottleneck,图4a。但如果GSConv用于模型的所有阶段,模型的网络层会加深,深层会加重抵制数据的流通,显著的增强推理时间。我们使用一个20秒的现场视频来测试我们的方法的有效性,该视频是在夜间微光下由仪表板摄像头捕捉的。使用带EIOU的MISH的网络具有更高的平均准确率,而使用SWISH的网络具有更快的速度(使用MISH的训练时间比使用SWISH的训练时间增加约29.26%)。
2023-07-02 20:27:57
1681
1
原创 4/100 Squeeze-and-Excitation Networks.
SE:Squeeze-and-Excitation Networks
2023-06-29 23:31:45
185
原创 3/200 Understanding and Simplifying One-Shot Architecture Search理解和简化一次性架构搜索
由于现有的体系结构搜索方法的计算成本高,需要从零开始训练数千个不同的体系结构。本文提出了一次架构的权重分配,以摊销训练成本,即既不需要超参数,也不需要RL控制器来达到好的结果,而是训练了一个包含搜索空间中每种可能操作的大型一次性模型,之后将一些操作归零,并测量对模型预测精度的影响,经训练发现,网络自动地将其能力集中在对产生良好预测最有用的操作上,证明了one-shot结构搜索只需要梯度下降,而不是强化学习或超网络,就可以很好地工作
2023-02-16 21:01:37
285
原创 2/200 AutoCompress: An Automatic DNN StructuredPruning Framework for Ultra-High Compression Rates.
一种用于超高压缩率的自动DNN结构化剪枝框架
2023-02-14 16:49:32
283
原创 1/200 Learning Efficient Convolutional Networks through Network Slimming
Learning Efficient Convolutional Networks through Network Slimming
2023-02-06 21:15:40
523
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人