An Attention-based Model for Conversion Rate Prediction with Delayed Feedback via Post-click Calibration
Yumin Su, Liang Zhang, Quanyu Dai, Bo Zhang, Jinyao Yan, Dan Wang, Yongjun Bao, Sulong Xu, Yang He and Weipeng Yan
JD.com, The Hong Kong Polytechnic University, Communication University of China
https://www.ijcai.org/Proceedings/2020/0487.pdf
在线展示广告的产业,价值高达数十亿美元,转化率预估在其中起着越来越重要的作用。
转化率预估主要有两个挑战,其一,用户历史数据比较稀疏,比较复杂且非线性;其二,点击时间和对应的转化时间可能会延迟数秒甚至几个周。现有模型通常受这种稀少数据以及延迟转化行为的影响。
这篇文章提出一种新的基于深度学习的框架,来解决以上两个挑战。具体而言,作者们从曝光及点击行为中提取出预训练的embedding,来辅助转化率模型,并且从序列点击数据中提出一种内部自注意力机制来捕获细粒度的个性化商品购买兴趣。
此外,为了解决转化时延问题,对时延模型进行校准,利用大量的后验点击数据学习动态风险函数,使得模型跟真实分布更加一致。
真实用户行为数据上的实验结果表明作者们所提方法的有效性。
转化率预估中的时延问题是一个挑战