dataframe

这里写图片描述

 note:内置函数名需要引号,自定义的不需要==>不是,内置函数不带引号也可以。

[(x,y),z,d]:ok

[{x:y},z,d]:error

groupby和agg使用有一个注意点:

 

1:df[df.name.str.contains('kw')].groupby('phone')['name'].agg([('uv',pd.Series.nunique)])

 

2:df[df.name.str.contains('kw')].groupby('phone').agg([('name',pd.Series.nunique)])

其实1和2的最终结果是一样的,不一样的是结果对应的列名

当groupby之后跟指定的列agg函数里既可以写成自己需要的列名,如果不跟指定的列agg函数里就必须写DF里的列名,不然会报不存在的列。

对不同列使用不同函数 
这里写图片描述

import pandas as pd
df = pd.DataFrame(data={'books':['bk1','bk1','bk1','bk2','bk2','bk3'], 'price': 
[12,12,12,15,15,17]})

df0 = df.groupby('books', as_index=True).sum()
print(df0.loc['bk1'])
#print(df0.loc[0])
print('..........................................')
df1 = df.groupby('books', as_index=False).sum()
#print(df1.loc['bk1'])
print(df1.loc[df1.books=='bk1'])
print('..........................................')
print(df1.loc[0])

price    36
Name: bk1, dtype: int64
..........................................
  books  price
0   bk1     36
..........................................
books    bk1
price     36
Name: 0, dtype: object

type(df1.loc[df1.books=='bk1'])
Out[9]: pandas.core.frame.DataFrame

type(df1.loc[0])
Out[10]: pandas.core.series.Series
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值