note:内置函数名需要引号,自定义的不需要==>不是,内置函数不带引号也可以。
[(x,y),z,d]:ok
[{x:y},z,d]:error
groupby和agg使用有一个注意点:
1:df[df.name.str.contains('kw')].groupby('phone')['name'].agg([('uv',pd.Series.nunique)])
2:df[df.name.str.contains('kw')].groupby('phone').agg([('name',pd.Series.nunique)])
其实1和2的最终结果是一样的,不一样的是结果对应的列名
当groupby之后跟指定的列agg函数里既可以写成自己需要的列名,如果不跟指定的列agg函数里就必须写DF里的列名,不然会报不存在的列。
对不同列使用不同函数
import pandas as pd
df = pd.DataFrame(data={'books':['bk1','bk1','bk1','bk2','bk2','bk3'], 'price':
[12,12,12,15,15,17]})
df0 = df.groupby('books', as_index=True).sum()
print(df0.loc['bk1'])
#print(df0.loc[0])
print('..........................................')
df1 = df.groupby('books', as_index=False).sum()
#print(df1.loc['bk1'])
print(df1.loc[df1.books=='bk1'])
print('..........................................')
print(df1.loc[0])
price 36
Name: bk1, dtype: int64
..........................................
books price
0 bk1 36
..........................................
books bk1
price 36
Name: 0, dtype: object