对数高斯分布

对数高斯分布是指服从正态分布的随机变量经过取对数变换后得到的分布。具体地,设 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)为一个正态分布随机变量, Y = ln ⁡ ( X ) Y=\ln(X) Y=ln(X) Y Y Y服从对数高斯分布,即 Y ∼ L N ( μ , σ 2 ) Y\sim\mathcal{LN}(\mu,\sigma^2) YLN(μ,σ2)
X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)为一个正态分布随机变量, Y = ln ⁡ ( X ) Y=\ln(X) Y=ln(X) Y Y Y服从对数高斯分布,即 Y ∼ L N ( μ , σ 2 ) Y\sim\mathcal{LN}(\mu,\sigma^2) YLN(μ,σ2)。那么 Y Y Y的均值和方差可以如下计算:

均值:

E ( Y ) = E ( ln ⁡ ( X ) ) = ∫ − ∞ ∞ ln ⁡ ( x ) ⋅ 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x E(Y)=E(\ln(X))=\int_{-\infty}^\infty \ln(x) \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx E(Y)=E(ln(X))=ln(x)2π σ1e2σ2(xμ)2dx 根据对数高斯分布的定义,我们可以将 x = e y x=e^y x=ey带入上式中得到: E ( Y ) = E ( ln ⁡ ( X ) ) = ∫ − ∞ ∞ y ⋅ 1 2 π σ e − ( e y − μ ) 2 2 σ 2 d y E(Y)=E(\ln(X))=\int_{-\infty}^\infty y \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(e^y-\mu)^2}{2\sigma^2}}dy E(Y)=E(ln(X))=y2π σ1e2σ2(eyμ)2dy 由于此处无法对积分式子进行解析求解,所以我们无法得到 Y Y Y的均值的显式表达式,但是可以使用数值计算方法进行求解。
常用的数值积分算法有梯形法、辛普森法和高斯积分法等。其中,辛普森法是一种较为常用的数值积分方法,其基本思路是将被积函数分段逼近为二次多项式,然后对每一段进行积分。下面是使用辛普森法计算对数高斯分布的均值E(Y)的示例MATLAB代码:

% 定义对数高斯分布的均值和方差
mu = 1; 
sigma = 0.5; 

% 定义被积函数
f = @(y) y .* lognpdf(y, mu, sigma);

% 定义积分上下限和分段数
a = 0;
b = 10;
n = 10000;

% 使用辛普森法计算积分
x = linspace(a, b, n+1);
y = f(x);
S = (b-a) / (3*n) * (y(1) + 4*sum(y(2:2:end-1)) + 2*sum(y(3:2:end-2)) + y(end));

% 输出对数高斯分布的均值
EY = exp(S)

其中,lognpdf(y, mu, sigma)表示对数高斯分布的概率密度函数,linspace(a, b, n+1)表示在区间[a, b]上均匀地生成n+1个点。

方差:

V a r ( Y ) = E ( Y 2 ) − ( E ( Y ) ) 2 \mathrm{Var}(Y)=E(Y^2)-(E(Y))^2 Var(Y)=E(Y2)(E(Y))2 同样利用 x = e y x=e^y x=ey的关系,我们有: Y 2 = ln ⁡ 2 ( X ) = ( ln ⁡ X ) 2 Y^2=\ln^2(X)=(\ln X)^2 Y2=ln2(X)=(lnX)2 所以 E ( Y 2 ) = E ( ( ln ⁡ X ) 2 ) = ∫ − ∞ ∞ ( ln ⁡ x ) 2 ⋅ 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x E(Y^2)=E((\ln X)^2)=\int_{-\infty}^\infty (\ln x)^2 \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx E(Y2)=E((lnX)2)=(lnx)22π σ1e2σ2(xμ)2dx 我们可以通过对上式进行两次分部积分,得到: E ( Y 2 ) = μ 2 + σ 2 E(Y^2)=\mu^2+\sigma^2 E(Y2)=μ2+σ2 于是,对数高斯分布的方差为: V a r ( Y ) = μ 2 + σ 2 − ( E ( Y ) ) 2 \mathrm{Var}(Y)=\mu^2+\sigma^2-(E(Y))^2 Var(Y)=μ2+σ2(E(Y))2

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值