高斯分布的积分期望E(X)方差V(X)的理论推导


本文主要推导高斯分布(正态分布)的积分,期望E(X)和方差V(X)。

其中主要是方差V(X)的推导,本文介绍3种高斯方差的推导方法。

高斯分布的概率密度函数:
f ( x ) = 1 2 π δ e − ( x − u ) 2 2 δ 2 (1) f(x) = \frac{1}{\sqrt{2\pi}\delta}{e^{-\frac{(x-u)^2}{2\delta^2}}} \tag{1} f(x)=2π δ1e2δ2(xu)2(1)


高斯分布的概率分布函数(归一化):
F = ∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ + ∞ 1 2 π δ e − ( x − u ) 2 2 δ 2 d x = 1 2 π δ ∫ − ∞ + ∞ e − ( x − u ) 2 2 δ 2 d ( x − u ) = 1 2 π δ ∫ − ∞ + ∞ e − x 2 2 δ 2 d x (2) \begin{aligned} F &=\int^{ +\infty }_{ - \infty }f(x)dx=\int^{ +\infty }_{ - \infty } \frac{1}{\sqrt{2\pi}\delta}{e^{-\frac{(x-u)^2}{2\delta^2}}dx}\\\\ &=\frac{1}{\sqrt{2\pi}\delta}\int^{ +\infty }_{ - \infty } {e^{-\frac{(x-u)^2}{2\delta^2}}d(x-u)}\\\\ &=\frac{1}{\sqrt{2\pi}\delta}\int^{ +\infty }_{ - \infty } {e^{-\frac{x^2}{2\delta^2}}dx} \end{aligned} \tag{2} F=+f(x)dx=+2π δ1e2δ2(xu)2dx=2π δ1+e2δ2(xu)2d(xu)=2π δ1+e2δ2x2dx(2)

概率密度函数的积分为 F ( x ) = 1 F(x)=1 F(x)=1,如下开始证明。这里直接计算 F ( x ) F(x) F(x)比较困难,但可以利用双重积分转极坐标计算体积的方式计算 F ( x ) 2 F(x)^2 F(x)2,如下
F 2 = 1 2 π δ ∫ − ∞ + ∞ e − x 2 2 δ 2 d x 1 2 π δ ∫ − ∞ + ∞ e − y 2 2 δ 2 d y = 1 2 π δ 2 ∫ − ∞ + ∞ ∫ − ∞ + ∞ e − x 2 + y 2 2 δ 2 d x d y (3) \begin{aligned} F^2 &=\frac{1}{\sqrt{2\pi}\delta}\int^{ +\infty }_{ - \infty } {e^{-\frac{x^2}{2\delta^2}}dx} \frac{1}{\sqrt{2\pi}\delta}\int^{ +\infty }_{ - \infty } {e^{-\frac{y^2}{2\delta^2}}dy}\\\\ &=\frac{1}{2\pi\delta^2}\int^{ +\infty }_{ - \infty }\int^{ +\infty }_{ - \infty } {e^{-\frac{x^2+y^2}{2\delta^2}}dxdy} \end{aligned} \tag{3} F2=2π δ1+e2δ2x2dx2π δ1+e2δ2y2dy=2πδ21++e2δ2x2+y2dxdy(3)

x = r sin ⁡ θ x=r\sin\theta x=rsinθ , y = r cos ⁡ θ y=r\cos\theta y=rcosθ , 坐标系转换到极坐标系就行积分
F 2 = 1 2 π δ 2 ∫ 0 2 π ∫ 0 + ∞ e − r 2 2 δ 2 r d r d θ = 1 2 π δ 2 ∫ 0 2 π d θ ∫ 0 + ∞ e − r 2 2 δ 2 r d r = 1 δ 2 ∫ 0 + ∞ e − r 2 2 δ 2 r d r = ∫ 0 + ∞ e − r 2 2 δ 2 d ( r 2 2 δ 2 ) = ∫ 0 + ∞ e − m d m = 1 (4) \begin{aligned} F^2 &=\frac{1}{2\pi\delta^2}\int^{ 2\pi }_{ 0 }\int^{ +\infty }_{ 0 } {e^{-\frac{r^2}{2\delta^2}}rdrd\theta}\\\\ &=\frac{1}{2\pi\delta^2}\int^{ 2\pi }_{ 0 }d\theta\int^{ +\infty }_{ 0 } {e^{-\frac{r^2}{2\delta^2}}rdr}\\\\ &=\frac{1}{\delta^2}\int^{ +\infty }_{ 0 } {e^{-\frac{r^2}{2\delta^2}}rdr}\\\\ &=\int^{ +\infty }_{ 0 } {e^{-\frac{r^2}{2\delta^2}}d(\frac{r^2}{2\delta^2})}\\\\ &=\int^{ +\infty }_{ 0 } {e^{-m}dm}\\\\ &=1 \end{aligned} \tag{4} F2=2πδ2102π0+e2δ2r2rdrdθ=2πδ2102πdθ0+e2δ2r2rdr=δ210+e2δ2r2rdr=0+e2δ2r2d(2δ2r2)=0+emdm=1(4)

即可证明得:
F = ∫ − ∞ + ∞ 1 2 π δ e − ( x − u ) 2 2 δ 2 d x = 1 (5) F =\int^{ +\infty }_{ - \infty } \frac{1}{\sqrt{2\pi}\delta}{e^{-\frac{(x-u)^2}{2\delta^2}}dx}=1\tag{5} F=+2π δ1e2δ2(xu)2dx=1(5)

注:这里可以由 F 2 = 1 F^2=1 F2=1 看出, F F F为一个2维正态分布,其在二维空间中体积为1


高斯分布的期望 E ( x ) = u E(x)=u E(x)=u 证明:
E ( x ) = ∫ − ∞ + ∞ x f ( x ) d x = ∫ − ∞ + ∞ 1 2 π δ e − ( x − u ) 2 2 δ 2 x d x = ∫ − ∞ + ∞ 1 2 π δ e − x 2 2 δ 2 ( x + u ) d x = ∫ − ∞ + ∞ 1 2 π δ e − x 2 2 δ 2 x d x ⏟ 0 + u ∫ − ∞ + ∞ 1 2 π δ e − x 2 2 δ 2 d x ⏟ 1 = u (6) \begin{aligned} E(x)&=\int^{ +\infty }_{ - \infty }xf(x)dx=\int^{ +\infty }_{ - \infty } \frac{1}{\sqrt{2\pi}\delta}{e^{-\frac{(x-u)^2}{2\delta^2}}xdx}\\\\ &=\int^{ +\infty }_{ - \infty } \frac{1}{\sqrt{2\pi}\delta}{e^{-\frac{x^2}{2\delta^2}}(x+u)dx}\\\\ &=\underbrace{\int^{ +\infty }_{ - \infty } \frac{1}{\sqrt{2\pi}\delta}{e^{-\frac{x^2}{2\delta^2}}xdx}}_{0}+u\underbrace{\int^{ +\infty }_{ - \infty } \frac{1}{\sqrt{2\pi}\delta}{e^{-\frac{x^2}{2\delta^2}}dx}}_{1}\\\\ &=u \end{aligned}\tag{6} E(x)=+xf(x)dx=+2π δ1e2δ2(xu)2xdx=+2π δ1e2δ2x2(x+u)dx=0 +2π δ1e2δ2x2xdx+u1 +2π δ1e2δ2x2dx=u(6)

由于 ∫ − ∞ + ∞ 1 2 π δ e − x 2 2 δ 2 x d x \int^{ +\infty }_{ - \infty } \frac{1}{\sqrt{2\pi}\delta}{e^{-\frac{x^2}{2\delta^2}}xdx} +2π δ1e2δ2x2xdx 为奇函数,积分为0,因此可得高斯分布的期望: E ( x ) = u E(x)=u E(x)=u


高斯分布的方差 V ( x ) = δ 2 V(x)=\delta^2 V(x)=δ2 证明,根据方差定义为误差平方的期望:
V = ∫ − ∞ + ∞ ( x − u ) 2 f ( x ) d x = ∫ − ∞ + ∞ 1 2 π δ e − ( x − u ) 2 2 δ 2 ( x − u ) 2 d x = ∫ − ∞ + ∞ 1 2 π δ e − x 2 2 δ 2 x 2 d x (7) \begin{aligned} V&=\int^{ +\infty }_{ - \infty }(x-u)^2f(x)dx\\\\ &=\int^{ +\infty }_{ - \infty } \frac{1}{\sqrt{2\pi}\delta}{e^{-\frac{(x-u)^2}{2\delta^2}}(x-u)^2dx}\\\\ &=\int^{ +\infty }_{ - \infty } \frac{1}{\sqrt{2\pi}\delta}{e^{-\frac{x^2}{2\delta^2}}x^2dx} \end{aligned}\tag{7} V=+(xu)2f(x)dx=+2π δ1e2δ2(xu)2(xu)2dx=+2π δ1e2δ2x2x2dx(7)

如下介绍3种推导方法,第一种最为复杂的推导,先计算 V 2 V^2 V2
V 2 = ∫ − ∞ + ∞ 1 2 π δ e − x 2 2 δ 2 x 2 d x ∫ − ∞ + ∞ 1 2 π δ e − y 2 2 δ 2 y 2 d y = 1 2 π δ 2 ∫ − ∞ + ∞ ∫ − ∞ + ∞ e − x 2 + y 2 2 δ 2 x 2 y 2 d x d y (8) \begin{aligned} V^2&=\int^{ +\infty }_{ - \infty } \frac{1}{\sqrt{2\pi}\delta}{e^{-\frac{x^2}{2\delta^2}}x^2dx}\int^{ +\infty }_{ - \infty } \frac{1}{\sqrt{2\pi}\delta}{e^{-\frac{y^2}{2\delta^2}}y^2dy}\\\\ &=\frac{1}{2\pi\delta^2}\int^{ +\infty }_{ - \infty }\int^{ +\infty }_{ - \infty } {e^{-\frac{x^2+y^2}{2\delta^2}}x^2y^2dxdy} \end{aligned}\tag{8} V2=+2π δ1e2δ2x2x2dx+2π δ1e2δ2y2y2dy=2πδ21++e2δ2x2+y2x2y2dxdy(8)

x = r sin ⁡ θ x=r\sin\theta x=rsinθ , y = r cos ⁡ θ y=r\cos\theta y=rcosθ
V 2 = 1 2 π δ 2 ∫ 0 2 π ∫ 0 + ∞ r 4 sin ⁡ 2 θ cos ⁡ 2 θ e − r 2 2 δ 2 r d r d θ = 1 2 π δ 2 ∫ 0 2 π sin ⁡ 2 θ cos ⁡ 2 θ d θ ∫ 0 + ∞ r 5 e − r 2 2 δ 2 d r (9) \begin{aligned} V^2&=\frac{1}{2\pi\delta^2}\int^{ 2\pi }_{ 0 }\int^{ +\infty }_{ 0 } {r^4\sin^2\theta \cos^2\theta e^{-\frac{r^2}{2\delta^2}}rdrd\theta}\\\\ &=\frac{1}{2\pi\delta^2}\int^{ 2\pi }_{ 0 } {\sin^2\theta \cos^2\theta d\theta\int^{ +\infty }_{ 0 }r^5e^{-\frac{r^2}{2\delta^2}}dr} \end{aligned}\tag{9} V2=2πδ2102π0+r4sin2θcos2θe2δ2r2rdrdθ=2πδ2102πsin2θcos2θdθ0+r5e2δ2r2dr(9)

上面两部分可分开计算,首先计算左边关于 θ \theta θ 的积分,由于 sin ⁡ 2 θ = 1 − cos ⁡ 2 θ 2 \sin^2 \theta=\frac{1-\cos2\theta}{2} sin2θ=21cos2θ
∫ 0 2 π sin ⁡ 2 θ cos ⁡ 2 θ d θ = 1 4 ∫ 0 2 π sin ⁡ 2 2 θ d θ = 1 4 ∫ 0 2 π 1 − cos ⁡ 4 θ 2 d θ = 1 8 ∫ 0 2 π d θ − 1 8 ∫ 0 2 π cos ⁡ 4 θ d θ = π 4 − 1 32 ∫ 0 8 π cos ⁡ θ d θ = π 4 (10) \begin{aligned} \int^{ 2\pi }_{ 0 } {\sin^2\theta \cos^2\theta d\theta}&=\frac{1}{4}\int^{ 2\pi }_{ 0 }{\sin^22\theta d\theta}\\\\ &=\frac{1}{4}\int^{ 2\pi }_{ 0 }\frac{1-\cos4\theta }{2} d\theta\\\\ &=\frac{1}{8}\int^{ 2\pi }_{ 0 }d\theta-\frac{1}{8}\int^{ 2\pi }_{ 0} {\cos4\theta } d\theta\\\\ &=\frac{\pi}{4}-\frac{1}{32}\int^{ 8\pi }_{ 0} {\cos\theta } d\theta\\\\ &=\frac{\pi}{4} \end{aligned}\tag{10} 02πsin2θcos2θdθ=4102πsin22θdθ=4102π21cos4θdθ=8102πdθ8102πcos4θdθ=4π32108πcosθdθ=4π(10)

计算右边关于 r r r 的积分,设 m = r 2 m=r^2 m=r2
∫ 0 + ∞ r 5 e − r 2 2 δ 2 d r = 1 2 ∫ 0 + ∞ m 2 e − m 2 δ 2 d m = − δ 2 ∫ 0 + ∞ m 2 d ( e − m 2 δ 2 ) = − δ 2 ( m 2 e − m 2 δ 2 ∣ 0 + ∞ − ∫ 0 + ∞ e − m 2 δ 2 d ( m 2 ) ) lim ⁡ m → + ∞ m 2 e − m 2 δ 2 = 0 ⟶ = 2 δ 2 ∫ 0 + ∞ m e − m 2 δ 2 d m = − 4 δ 4 ∫ 0 + ∞ m d ( e − m 2 δ 2 ) = − 4 δ 4 ( m e − m 2 δ 2 ∣ 0 + ∞ − ∫ 0 + ∞ e − m 2 δ 2 d m ) lim ⁡ m → + ∞ m e − m 2 δ 2 = 0 ⟶ = 4 δ 4 ∫ 0 + ∞ e − m 2 δ 2 d m = 8 δ 6 (11) \begin{aligned} \int^{ +\infty }_{ 0 }r^5e^{-\frac{r^2}{2\delta^2}}dr&=\frac{1}{2}\int^{ +\infty }_{ 0 }m^2e^{-\frac{m}{2\delta^2}}dm\\\\ &=-\delta^2\int^{ +\infty }_{ 0 }m^2d(e^{-\frac{m}{2\delta^2}})\\\\ &=-\delta^2 \bigg( m^2e^{-\frac{m}{2\delta^2}}|^{+\infty}_{0}-\int^{ +\infty }_{ 0 }e^{-\frac{m} {2\delta^2}}d(m^2)\bigg)\\\\ \lim_{m\rightarrow+\infty} m^2e^{-\frac{m}{2\delta^2}}=0\longrightarrow&=2\delta^2 \int^{ +\infty }_{ 0 }me^{-\frac{m}{2\delta^2}}dm\\\\ &=-4\delta^4\int^{ +\infty }_{ 0 }md(e^{-\frac{m}{2\delta^2}})\\\\ &=-4\delta^4 \bigg( me^{-\frac{m}{2\delta^2}}|^{+\infty}_{0}-\int^{ +\infty }_{ 0 }e^{-\frac{m} {2\delta^2}}dm\bigg)\\\\ \lim_{m\rightarrow+\infty} me^{-\frac{m}{2\delta^2}}=0\longrightarrow&=4\delta^4 \int^{ +\infty }_{ 0 }e^{-\frac{m}{2\delta^2}}dm\\\\ &=8\delta^6 \end{aligned}\tag{11} 0+r5e2δ2r2drm+limm2e2δ2m=0m+limme2δ2m=0=210+m2e2δ2mdm=δ20+m2d(e2δ2m)=δ2(m2e2δ2m0+0+e2δ2md(m2))=2δ20+me2δ2mdm=4δ40+md(e2δ2m)=4δ4(me2δ2m0+0+e2δ2mdm)=4δ40+e2δ2mdm=8δ6(11)

因此
V 2 = 1 2 π δ 2 ∫ 0 2 π sin ⁡ 2 θ cos ⁡ 2 θ d θ ⋅ ∫ 0 + ∞ r 5 e − r 2 2 δ 2 r d r = 1 2 π δ 2 ⋅ π 4 ⋅ 8 δ 6 = δ 4 (12) \begin{aligned} V^2&=\frac{1}{2\pi\delta^2}\int^{ 2\pi }_{ 0 } {\sin^2\theta \cos^2\theta d\theta\cdot\int^{ +\infty }_{ 0 }r^5e^{-\frac{r^2}{2\delta^2}}rdr}\\\\ &=\frac{1}{2\pi\delta^2}\cdot\frac{\pi}{4}\cdot8\delta^6\\\\ &=\delta^4 \end{aligned}\tag{12} V2=2πδ2102πsin2θcos2θdθ0+r5e2δ2r2rdr=2πδ214π8δ6=δ4(12)

所以 V = δ 2 V=\delta^2 V=δ2,即证。

如下介绍第二种较为巧妙的推导:
V = ∫ − ∞ + ∞ 1 2 π δ e − ( x − u ) 2 2 δ 2 ( x − u ) 2 d x = ∫ − ∞ + ∞ 1 2 π δ e − x 2 2 δ 2 x 2 d x = − δ 2 π ∫ − ∞ + ∞ x d ( e − x 2 2 δ 2 ) = − δ 2 π ( x e − x 2 2 δ 2 ∣ − ∞ + ∞ ⏟ 0 − ∫ − ∞ + ∞ e − x 2 2 δ 2 d x ) = δ 2 π ∫ − ∞ + ∞ e − x 2 2 δ 2 d x = δ 2 ⋅ 1 2 π δ ∫ − ∞ + ∞ e − x 2 2 δ 2 d x = δ 2 (13) \begin{aligned} V&=\int^{ +\infty }_{ - \infty } \frac{1}{\sqrt{2\pi}\delta}{e^{-\frac{(x-u)^2}{2\delta^2}}(x-u)^2dx}\\\\ &=\int^{ +\infty }_{ - \infty } \frac{1}{\sqrt{2\pi}\delta}{e^{-\frac{x^2}{2\delta^2}}x^2dx}\\\\ &=-\frac{\delta}{\sqrt{2\pi}}\int^{ +\infty }_{ - \infty } xd\Big(e^{-\frac{x^2}{2\delta^2}}\Big)\\\\ &=-\frac{\delta}{\sqrt{2\pi}}\bigg(\underbrace{xe^{-\frac{x^2}{2\delta^2}}|^{+\infty}_{-\infty}}_{0}-\int^{ +\infty }_{ - \infty }{e^{-\frac{x^2}{2\delta^2}}dx}\bigg)\\\\ &=\frac{\delta}{\sqrt{2\pi}}\int^{ +\infty }_{ - \infty }{e^{-\frac{x^2}{2\delta^2}}dx}\\\\ &=\delta^2 \cdot\frac{1}{\sqrt{2\pi}\delta}\int^{ +\infty }_{ - \infty }{e^{-\frac{x^2}{2\delta^2}}dx}\\\\ &=\delta^2 \end{aligned}\tag{13} V=+2π δ1e2δ2(xu)2(xu)2dx=+2π δ1e2δ2x2x2dx=2π δ+xd(e2δ2x2)=2π δ(0 xe2δ2x2++e2δ2x2dx)=2π δ+e2δ2x2dx=δ22π δ1+e2δ2x2dx=δ2(13)

第三种证明方法则利用方差特性:
V ( x ) = E ( ( x − E ( x ) ) 2 ) = E ( x 2 − 2 x E ( x ) + E 2 ( x ) ) = E ( x 2 ) − 2 E ( x ) E ( x ) + E 2 ( x ) = E ( x 2 ) − E 2 ( x ) = E ( x 2 ) − u 2 (14) \begin{aligned} V(x)&=E\Big((x-E(x))^2\Big)\\\\ &=E\Big(x^2-2xE(x)+E^2(x)\Big)\\\\ &=E(x^2)-2E(x)E(x)+E^2(x)\\\\ &=E(x^2)-E^2(x)\\\\ &=E(x^2)-u^2 \end{aligned}\tag{14} V(x)=E((xE(x))2)=E(x22xE(x)+E2(x))=E(x2)2E(x)E(x)+E2(x)=E(x2)E2(x)=E(x2)u2(14)

这里只需再求取 E ( x 2 ) E(x^2) E(x2) 即可

期望 E ( x ) E(x) E(x) 的另一个叫法是分布函数的 一阶矩 ,而 E ( x 2 ) E(x^2) E(x2) 也叫 二阶矩,这里就是求概率分布的二阶矩

E ( x 2 ) = ∫ − ∞ + ∞ 1 2 π δ e − ( x − u ) 2 2 δ 2 x 2 d x (15) E(x^2)=\int^{ +\infty }_{ - \infty } \frac{1}{\sqrt{2\pi}\delta}{e^{-\frac{(x-u)^2}{2\delta^2}}x^2dx}\tag{15} E(x2)=+2π δ1e2δ2(xu)2x2dx(15)

参考第二种证明的方法,可以比较快速的得到:

E ( x 2 ) = δ 2 + u 2 (16) E(x^2)=\delta^2+u^2\tag{16} E(x2)=δ2+u2(16)

从而可得 V ( x ) = E ( x 2 ) − u 2 = δ 2 V(x)=E(x^2)-u^2=\delta^2 V(x)=E(x2)u2=δ2 , 即证明。

感悟:三种方法证明完成,最近在看《概率机器人》,里面所有理论基础都是概率贝叶斯,索性重新推导了高斯分布,发现高斯分布真是一个伟大的发现,用一个如此优雅的曲线描绘这个世界的创造规律,从而让所有的不确定性可以被估计和优化,打开了人类与上帝对话的一个窗口,窥探上帝的造物规律。

参考文献:

https://blog.csdn.net/qq_37549266/article/details/95942282
https://www.zhihu.com/question/23971601

  • 23
    点赞
  • 43
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值