最全的Android 颜色透明度

好记性不如烂笔头。生活中多做笔记,不仅可以方便自己,还可以方便他人。

背景

开发的都知道,UI微调都是令人头痛的,尤其是颜色的微调。

如果视觉稿直接给颜色值那倒没啥,可怕的是后面还有标了透明度,而且视觉还原后发现颜色太透明了,要你透明度再调调,这才烦人。我总不能记住100个透明度的值吧。

一次计算,无数次使用,这文章,稳了。

正文

Android中的颜色值一般格式是:#AARRGGBB。AA就是透明度值(这里我只聊透明度)。

1. 透明度的计算

透明度分为256个等级,即 0 - 2560就是透明,255就是不透明


透明度 (透明)0 –> 255(不透明) 对应着16进制 (透明)00 –> FF(不透明)


比如:50%透明度

50%也就是256的一半即128,因为是从0开始算的,所以是 127,转换成16进制就是 7F


2.献上透明度表格

注意:我这里写的是透明度值,不是不透明度值,这是两个不同的概念,注意区分。


需要不透明度值的,可以自己算:透明度值 + 不透明度值 = 100%

如果你的UI设计师给的视觉稿标注是:颜色#FFFFFF,透明度40% 。那你的计算方式应该是:

  1. 将透明度转换成不透明度。不透明度为:60%
  2. 不透明度乘以255。 我们得到结果:153
  3. 将计算结果转换成16进制。得到最终的不透明度:99
  4. 将不透明度和颜色值拼接成ARGB格式。得到最终的颜色值: #99FFFFFF

所以,你的UI设计师要的颜色是:#99FFFFFF


下面是我表格里的透明度值的计算方式是:(A:透明度; H:16进制)

255*(100% - A%) 通过计算器转为16进制 H

(ps:因为计算结果取整数,所以可能会有一个进制位的误差,比如50%的透明度值,上面“1.透明度的计算”中的计算是127,16进制为7F,这里计算是127.5,四舍五入为128,16进制为80。所以,看到这里不用惊慌,7F跟80肉眼看起来是差不多的,不用去计较)

00是完全透明(百分百透明),FF就是完全透明

透明度16进制表示
100 %00
99   %03
98   %05
97   %07
96   %0A
95   %0D
94   %0F
93   %12
92   %14
91   %17
90   %1A
89   %1C
88   %1E
87   %21
86   %24
85   %26
84   %29
83   %2B
82   %2E
81   %30
80   %33
79   %36
78   %38
77   %3B
76   %3D
75   %40
74   %42
73   %45
72   %47
71   %4A
70   %4D
69   %4F
68   %52
67   %54
66   %57
65   %59
64   %5C
63   %5E
62   %61
61   %63
60   %66
59   %69
58   %6B
57   %6E
56   %70
55   %73
54   %75
53   %78
52   %7A
51   %7D
50   %80
49   %82
48   %85
47   %87
46   %8A
45   %8C
44   %8F
43   %91
42   %94
41   %96
40   %99
39   %9C
38   %9E
37   %A1
36   %A3
35   %A6
34   %A8
33   %AB
32   %AD
31   %B0
30   %B3
29   %B5
28   %B8
27   %BA
26   %BD
25   %BF
24   %C2
23   %C4
22   %C7
21   %C9
20   %CC
19   %CF
18   %D1
17   %D4
16   %D6
15   %D9
14   %DB
13   %DE
12   %E0
11   %E3
10   %E6
9   %E8
8   %EB
7   %ED
6   %F0
5   %F2
4   %F5
3   %F7
2   %FA
1   %FC
0   %FF

结尾

东西虽然简单,但还是写出来,就当工具用,下次调UI就可以来这里看。如果上面有写错了,欢迎来“搞”!哈哈!

参考文章

本文参考了这位同学的文章
http://blog.csdn.net/jabony/article/details/52804296

安装PyTorch的GPU版本需要以下步骤: 1. 首先,确保你选择了正确的版本。在下载页面中,CPU版本的文件名以"cpu"开头,而GPU版本的文件名以"cu"开头。确保选择了正确的GPU版本。\[2\] 2. 将下载好的PyTorch和torchvision压缩包复制到Anaconda安装文件夹下的pkgs文件夹中。这里选择的是PyTorch 1.4.0版本和torchvision 0.5.0版本。\[1\] 3. 打开Anaconda Prompt,导入torch和torchvision库。使用以下命令导入库: ``` import torch import torchvision ``` 4. 确认你的GPU是否可用。使用以下命令检查GPU是否可用: ``` torch.cuda.is_available() ``` 如果返回True,则表示你的GPU可用。 5. 使用以下命令获取你的GPU设备名称: ``` torch.cuda.get_device_name(0) ``` 这将返回你的GPU设备的名称,例如"NVIDIA GeForce RTX 3070 Ti Laptop GPU"。\[3\] 通过按照以上步骤安装PyTorch的GPU版本,你就可以在你的系统上使用GPU进行深度学习任务了。 #### 引用[.reference_title] - *1* [安装GPU版本Pytorch(全网最详细过程)](https://blog.csdn.net/Starinfo/article/details/129293867)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [GPU版本安装Pytorch教程最新方法](https://blog.csdn.net/qq_45956730/article/details/126600028)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值