[]BIT车辆数据集
数据集描述:
BIT车辆数据集包含9850个车辆图像。数据集中有两台相机在不同时间和地点拍摄的尺寸分别为1600*1200和1920*1080的图像。这些图像包含照明条件、比例、车辆表面颜色和视点的变化。由于拍摄的原因,一些车辆的顶部或底部未包含在图像中
延迟和车辆的尺寸。一个图像中可能有一辆或两辆车,因此每个车的位置都会预先注释。该数据集还可用于评估车辆检测的性能。数据集中的所有车辆都分为六类:公共汽车、微型公共汽车、小型货车、轿车、SUV和卡车。每种车型的车辆数量分别为558辆、883辆、476辆、5922辆、1392辆和822辆。
注释信息描述:
matlab可以打开名为“VehicleInfo.mat”的文件,其中包含注释信息。在“VehicleInfo.mat”中有一个名为“VehiclInfo”的结构数组。“Vehicle Info”的大小为10400*1,每个元素描述一个图像。结构体的字段如下所示。
name:图像的文件名。
height:图像的高度。
width:图像的宽度。
车辆:图像中的车辆数量。
vehicles:此字段是一个结构数组,大小为1*vehicles,每个元素描述一个车辆。每个元素包含五个文件:left、top、right、bottom和category。前四个文件表示车辆在图像中的位置,字段“类别”表示车辆的类型。
但是由于数据集描述是mat格式,需要转换成xml才可以用于目标检测使用,改数据集的类别如下[‘Bus’, ‘Truck’, ‘SUV’, ‘Microbus’, ‘Sedan’, ‘Minivan']
在matlab中运行,有点复杂
data=load('./BITVehicle_Dataset/VehicleInfo.mat')
cars=data.VehicleInfo;
for n=1:length(cars)
n;
car=cars(n);
%%
%每一辆车新建一个xml文件存储车的信息
carName=car.name;
%图片的高度
carHeight=car.height;
%图片的宽度
carWidth=car.width;
%新建xml文件
annotation = com.mathworks.xml.XMLUtils.createDocument('annotation');
annotationRoot = annotation.getDocumentElement;
%定义子节点,xml的存储路径
folder=annotation.createElement('folder');
folder.appendChild(annotation.createTextNode(sprintf('%s','H:\车辆目标检测项目\数据集\BITVehicle_xml')));%这里为xml存放的目录
annotationRoot.appendChild(folder);
%图片的名称,不包含后缀名
jpgName=annotation.createElement('filename');
jpgName.appendChild(annotation.createTextNode(sprintf('%s',carName(1:end-4))));
annotationRoot.appendChild(jpgName);
%source就不添加了
%添加图片的size
jpgSize=annotation.createElement('size');
annotationRoot.appendChild(jpgSize);
%定义size的子节点
%图片宽度
width=annotation.createElement('width');
width.appendChild(annotation.createTextNode(sprintf('%i',carWidth)));
jpgSize.appendChild(width);
%图片高度
height=annotation.createElement('height');
height.appendChild(annotation.createTextNode(sprintf('%i',carHeight)));
jpgSize.appendChild(height);
%图片深度,彩色图片3
depth=annotation.createElement('depth');
depth.appendChild(annotation.createTextNode(sprintf('%i',3)));
jpgSize.appendChild(depth);
segmented=annotation.createElement('segmented');
segmented.appendChild(annotation.createTextNode(sprintf('%i',0)));%表示已经标注过了
annotationRoot.appendChild(segmented);
%接下来是每一辆车的标注信息
%%
carVehicles=car.vehicles;
L=length(carVehicles);
if L>1
carName
L
end
for nn=1:length(carVehicles)
vehicle=carVehicles(nn);
%标注框的最左侧坐标
vLeft=vehicle.left;
%标注框的最上边坐标
vTop=vehicle.top;
%标注框的最右侧坐标
vRight=vehicle.right;
%标注框最下面坐标
vBottom=vehicle.bottom;
%车的类别
vCategory=vehicle.category;
%图片中有多少个标注对象
carNvehicles=car.nVehicles;
%在这里生成每一符图片的txt文件,用于
%%注意一张图片中可能会有多个对象
%%matlab直接生成xml对象???
%将这一辆车的信息注入xml中
object=annotation.createElement('object');
annotationRoot.appendChild(object);
%标注框类别名称
categoryName=annotation.createElement('name');
categoryName.appendChild(annotation.createTextNode(sprintf('%s',vCategory)));
object.appendChild(categoryName);
pose=annotation.createElement('pose');
pose.appendChild(annotation.createTextNode(sprintf('%s','Unspecified')));
object.appendChild(pose);
truncated=annotation.createElement('truncated');
truncated.appendChild(annotation.createTextNode(sprintf('%i',0)));
object.appendChild(truncated);
Difficult=annotation.createElement('Difficult');
Difficult.appendChild(annotation.createTextNode(sprintf('%i',0)));
object.appendChild(Difficult);
bndbox=annotation.createElement('bndbox');
object.appendChild(bndbox);
xmin=annotation.createElement('xmin');
xmin.appendChild(annotation.createTextNode(sprintf('%i',vLeft)));
bndbox.appendChild(xmin);
ymin=annotation.createElement('ymin');
ymin.appendChild(annotation.createTextNode(sprintf('%i',vTop)));
bndbox.appendChild(ymin);
xmax=annotation.createElement('xmax');
xmax.appendChild(annotation.createTextNode(sprintf('%i',vRight)));
bndbox.appendChild(xmax);
ymax=annotation.createElement('ymax');
ymax.appendChild(annotation.createTextNode(sprintf('%i',vBottom)));
bndbox.appendChild(ymax);
end
%存储xml
savePath=['H:\车辆目标检测项目\数据集\BITVehicle_xml\',carName(1:end-3),'xml'];
xmlwrite(savePath,annotation);
end
弄完之后就会生成xml格式的,在使用python解析即可