【题解】AtCoder ARC112E Cigar Box题解

[ARC112E] E - Cigar Box 题解

题目大意

给定 1 ∼ n 1\sim n 1n 的排列 P P P,并给定 m m m,要求在 m m m 次操作以内将排列 P P P 还原为 1 ∼ n 1\sim n 1n 的升序排列(即 1 , 2 , ⋯   , n 1,2,\cdots,n 1,2,,n)。

一次操作是指:将排列中的任意一个数移到第一个或移到最后一个。

  • 2 ⩽ n ⩽ 3000 2\leqslant n\leqslant 3000 2n3000
  • 1 ⩽ m ⩽ 3000 1\leqslant m\leqslant 3000 1m3000

分析

动态规划。

首先有一条性质,就是说对于一个数 x x x 的所有操作中,只有最后一个操作才是有效的,其他操作对于还原都是无效的。显然,任意一个数有且仅有一个与它对应的有效操作。

假设操作序列 M M M 能使得题目给定的排列还原,就可以设 f i , j f_{i,j} fi,j 表示满足序列的 i i i 项中有 j j j 个有效操作的序列数。假设 [ [ [操作 M i M_i Mi 是有效的 ] ( 1 ) ]^{(1)} ](1),那么方案数就是 f i − 1 , j − 1 f_{i-1,j-1} fi1,j1;如果操作 M i M_i Mi 是无效的,那么方案数是 f i − 1 , j f_{i-1,j} fi1,j,但又因为还要考虑这个操作和哪一个操作冲突了(后面哪一个操作移动了这个数),所以还要乘 ( i − 1 ) (i-1) (i1)。所以,可以得出转移方程 f i , j = f i − 1 , j − 1 + ( i − 1 ) f i − 1 , j f_{i,j}=f_{i-1,j-1}+(i-1)f_{i-1,j} fi,j=fi1,j1+(i1)fi1,j

最后,统计答案。注意这个转移方程的前提。显然的,在大多数状态下会有一些数没有被操作过。这些数没被操作过到最后依然能够形成 1 ∼ n 1\sim n 1n 的排列,说明这些数是连续的区间,并且单调递增。可以枚举区间 [ l , r ] [l,r] [l,r],只要区间 [ l , r ] [l,r] [l,r] 满足 a l ∼ a r a_l\sim a_r alar 递增就可以将 f l , r f_{l,r} fl,r 累加到答案中。累加的时候还需考虑操作是移到最前面还是移到最后面。可以用组合数 C i − 1 + n − j i − 1 C_{i-1+n-j}^{i-1} Ci1+nji1 解决。当然,还要考虑 [ [ [没有递增序列但依然合法的情况 ] ( 2 ) ]^{(2)} ](2)。这种情况说明所有操作都有效,那么只需要看操作是移到前面还是移到后面, [ [ [ 2 n 2^n 2n 种情况 ] ( 3 ) ]^{(3)} ](3)

注记

这里的注记是给看不懂此题解的同学们看的。

  • ( 1 ) (1) (1):“操作有效”的含义就是说这个操作移动的数在后面没有被移动过。由于设计的状态 f i , j f_{i,j} fi,j 与后 i i i 项相关,所以 M i + 1 ∼ M m M_{i+1}\sim M_{m} Mi+1Mm 中没有操作所移动的数跟 M i M_i Mi 移动的数相等。
  • ( 2 ) (2) (2):也就是说所有的数都被移动过了,所以没有递增序列。
  • ( 3 ) (3) (3):每个数对应的有效操作有可能是将某个数移至最前面,也有可能是移至最后面,共 n n n 个数,所以有 2 n 2^n 2n 种方法。

代码

#include <bits/stdc++.h>
#define int long long
using namespace std;
inline int read(){
	int s = 0, w = 1;
	char ch = getchar();
	for(; ch < '0' || ch > '9'; w *= ch == '-' ? -1 : 1, ch = getchar());
	for(; ch >= '0' && ch <= '9'; s = 10 * s + ch - '0', ch = getchar());
	return s * w;
}
const int MAXN = 3005;
const int MOD = 998244353;
int n, m, a[MAXN], f[MAXN][MAXN], C[MAXN][MAXN << 1];
signed main(){
	n = read(), m = read();
	for(int i = 1; i <= n; i++) a[i] = read();
	for(int i = 1; i <= n; i++){
		C[i][0] = C[i][i] = 1;
		for(int j = 1; j < i; j++){
			C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % MOD;
		}
	}
	f[0][0] = 1;
	for(int i = 1; i <= m; i++){
		for(int j = 1; j <= n; j++){
			f[i][j] = (f[i - 1][j - 1] + f[i - 1][j] * 2 * j % MOD) % MOD;
		}
	}
	int res = 0;
	for(int i = 1; i <= n; i++){
		bool flag = false;
		for(int j = i; j <= n; j++){
			if(j > i && a[j] < a[j - 1]) flag = true;
			if(flag) break;
			res = (res + f[m][i - 1 + n - j] * C[i - 1 + n - j][i - 1]) % MOD;
		}
	}
	for(int i = 0; i <= n; i++){
		res = (res + f[m][n] * C[n][i] % MOD) % MOD;
	}
	cout << res << endl;
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
AtCoder Beginner Contest 134 是一场 AtCoder 的入门级比赛,以下是每道题的简要题解: A - Dodecagon 题目描述:已知一个正十二边形的边长,求它的面积。 解题思路:正十二边形的内角为 $150^\circ$,因此可以将正十二边形拆分为 12 个等腰三角形,通过三角形面积公式计算面积即可。 B - Golden Apple 题目描述:有 $N$ 个苹果和 $D$ 个盘子,每个盘子最多可以装下 $2D+1$ 个苹果,求最少需要多少个盘子才能装下所有的苹果。 解题思路:每个盘子最多可以装下 $2D+1$ 个苹果,因此可以将苹果平均分配到每个盘子中,可以得到最少需要 $\lceil \frac{N}{2D+1} \rceil$ 个盘子。 C - Exception Handling 题目描述:给定一个长度为 $N$ 的整数序列 $a$,求除了第 $i$ 个数以外的最大值。 解题思路:可以使用两个变量 $m_1$ 和 $m_2$ 分别记录最大值和次大值。遍历整个序列,当当前数不是第 $i$ 个数时,更新最大值和次大值。因此,最后的结果应该是 $m_1$ 或 $m_2$ 中较小的一个。 D - Preparing Boxes 题目描述:有 $N$ 个盒子和 $M$ 个物品,第 $i$ 个盒子可以放入 $a_i$ 个物品,每个物品只能放在一个盒子中。现在需要将所有的物品放入盒子中,每次操作可以将一个盒子内的物品全部取出并分配到其他盒子中,求最少需要多少次操作才能完成任务。 解题思路:首先可以计算出所有盒子中物品的总数 $S$,然后判断是否存在一个盒子的物品数量大于 $\lceil \frac{S}{2} \rceil$,如果存在,则无法完成任务。否则,可以用贪心的思想,每次从物品数量最多的盒子中取出一个物品,放入物品数量最少的盒子中。因为每次操作都会使得物品数量最多的盒子的物品数量减少,而物品数量最少的盒子的物品数量不变或增加,因此这种贪心策略可以保证最少需要的操作次数最小。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值