AI学习
neverGiveUp93
AI学习中
展开
-
CNN经典网络发展
本文将介绍CNN的经典网络。包括LeNet、AlexNet、VGG、GoogleNet、ResNet。文中涉及的一些概念,请查看前面写的文章《CNN相关概念的理解》。LeNet:网络结构如下:LeNet用于手写数字识别,输出包含10个类别,网络结构参数如下。Input Layer:13232图像Conv1 Layer:包含6个滤波器,kernal size:55,parameters:(55+1)6=156个Subsampling Layer:average pooling,size:22,原创 2020-07-11 22:14:11 · 638 阅读 · 0 评论 -
交叉熵与softmax的概念
信息量:越不可能的事件发生了,我们获取到的信息量就越大。越可能发生的事件发生了,我们获取到的信息量就越小。信息量的公式如下:熵:用来表示所有信息量的期望,熵的公式如下:然而有一类比较特殊的问题,比如投掷硬币只有两种可能,字朝上或花朝上。买彩票只有两种可能,中奖或不中奖。我们称之为0-1分布问题(二项分布的特例),对于这类问题,熵的计算方法可以简化为如下算式:相对熵:相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(原创 2020-07-11 19:46:06 · 431 阅读 · 0 评论 -
RNN网络模型及代码实现
RNN结构与传统的前馈神经网络不同,其存在记忆效应。这种记忆使得神经网络可以对上下文进行分析。显示的表示其对时间的依赖性:y=f(x;t)。RNN模型的数学表示如下为:对于多层RNN模型,将y继续作为输入:当个RNN的示意流图如下:import tensorflow as tf # 超参数 batch_size = 32 seq_len = 100 # 文本长度,T=100 embedding_size = 128 # 降维后向量长度 hidden_size = 128 # 隐藏原创 2020-07-05 20:47:42 · 4945 阅读 · 0 评论 -
RNN 文本向量化
文本向量化深度神经网络仅能处理浮点型的向量,所以需要将每个字符均转换为向量。对于句子的向量化,最终结果是将句子转换为onehot编码。以一个句子【今天天气不好。】为例,实现向量化。步骤如下:将字转换为ID:建立字典,为每个字符赋予一个整形数字。句子转换为(197 2000 2000 12 45 300 1)对整形数字进行OneHot编码:编码后的形式为[T,字符数量]。如果存在多个句子(BatchSize,B),输入表示为[B,T,字符数量],T表示句子中的字数,这里T=7对字符数量降维:由原创 2020-07-05 20:01:16 · 673 阅读 · 0 评论 -
CNN 相关观念的理解
CNN的基本组件包括:感知器、激活函数、卷积层、池化层、正则化、全连接层、Softmax回归。下面分别对这些组件进行介绍。1、感知器感知器是神经网络的组成单元。一个感知器可以接受多个输入(x1,x2…,xn),每个输入上有一个权值wi,此外还有一个偏置项b(一般用w0表示)。感知器的激活函数可以有很多选择,比如我们可以选择如下阶跃函数f来作为激活函数:感知器的输出则为下面的公式表示:2、激活函数激活函数的作用是为了给神经网络加入一些非线性性因素,使得神经网络可以更好地解决较为复杂的问题。常用原创 2020-07-04 21:16:21 · 254 阅读 · 1 评论 -
深度学习 CNN
1、tensorflow官方训练仿真器链接:http://playground.tensorflow.org/2、加深滤波器的理解链接:http://setosa.io/ev/image-kernels/**卷积的基本组件:**卷积层、池化层、全连接层。卷积层:提取特征,输入与滤波器相乘后相加。池化层:删除冗余,输入取滤波器维度的内的最大值或平均值。下图池化层。全连接层:分类器。卷积中的降维当池化层滤波器步长为1,不能实现降维。不管是卷积层还是池化层,实现降维的方法只能是调整步长。(卷积中的降原创 2020-07-04 10:15:23 · 181 阅读 · 0 评论 -
SVM 超平面的理解
原创 超平面是什么?——理解超平面(SVM开篇之超平面详解) ...转载 2019-10-25 21:28:12 · 747 阅读 · 0 评论