RNN网络模型及代码实现

这篇博客深入探讨了RNN(循环神经网络)的结构,强调了其记忆效应在处理时间序列数据中的关键作用。通过数学公式展示了RNN模型的工作原理,并介绍了多层RNN的表示方式。此外,还提供了RNN的示意流程图,帮助读者更好地理解这一深度学习模型。
摘要由CSDN通过智能技术生成

RNN结构与传统的前馈神经网络不同,其存在记忆效应。这种记忆使得神经网络可以对上下文进行分析。显示的表示其对时间的依赖性:y=f(x;t)。
RNN模型的数学表示如下为:
在这里插入图片描述
对于多层RNN模型,将y继续作为输入:
在这里插入图片描述
当个RNN的示意流图如下:
在这里插入图片描述

import tensorflow as tf  

# 超参数 
batch_size = 32 
seq_len = 100 # 文本长度,T=100 
embedding_size = 128 # 降维后向量长度 
hidden_size = 128 # 隐藏层向量长度

# 统计量
n_words = 5388 #字符数量
n_class = 10 # 类别数量

input_ID = tf.placeholder(tf
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值