RNN结构与传统的前馈神经网络不同,其存在记忆效应。这种记忆使得神经网络可以对上下文进行分析。显示的表示其对时间的依赖性:y=f(x;t)。
RNN模型的数学表示如下为:
对于多层RNN模型,将y继续作为输入:
当个RNN的示意流图如下:
import tensorflow as tf
# 超参数
batch_size = 32
seq_len = 100 # 文本长度,T=100
embedding_size = 128 # 降维后向量长度
hidden_size = 128 # 隐藏层向量长度
# 统计量
n_words = 5388 #字符数量
n_class = 10 # 类别数量
input_ID = tf.placeholder(tf