交叉熵与softmax的概念

本文介绍了信息量、熵、相对熵(KL散度)以及交叉熵的概念,强调了在0-1分布问题中熵的计算。讨论了在机器学习中,交叉熵作为损失函数用于评估模型与真实分布的差距,而softmax函数用于将神经网络的输出转换为概率分布。
摘要由CSDN通过智能技术生成

信息量:
越不可能的事件发生了,我们获取到的信息量就越大。越可能发生的事件发生了,我们获取到的信息量就越小。信息量的公式如下:
在这里插入图片描述
熵:
用来表示所有信息量的期望,熵的公式如下:
在这里插入图片描述
在这里插入图片描述
然而有一类比较特殊的问题,比如投掷硬币只有两种可能,字朝上或花朝上。买彩票只有两种可能,中奖或不中奖。我们称之为0-1分布问题(二项分布的特例),对于这类问题,熵的计算方法可以简化为如下算式:
在这里插入图片描述
相对熵:
相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(Kullback-Leibler (KL) divergence)来衡量这两个分布的差异。
在机器学习中,P往往用来表示样本的真实分布,比如[1,0,0]表示当前样本属于第一类。Q用来表示模型所预测的分布,比如[0.7,0.2,0.1]
直观的理解就是如果用P来描述样本,那么就非常完美。而用Q来描述样本,虽然可以大致描述,但是不是那么的完美,信息量不足,需要额外的一些“信息增量”才能达到和P一样完美的描述。如果我们的Q通过反复训练,也能完美的描述样本,那么就不再需要额外的“信息增量”,Q等价于P。
KL散度的计算公式:
在这里插入图片描述
n为事件的所有可能性。
DKL的值越小,表示q分布和p分布越接近

交叉熵:
对于KL散度的公式可以 转换如下,等式的前一部分恰巧就是p的熵,等式的后一部分,就是交叉熵:
在这里插入图片描述
因此,交叉熵的公式如下:
在这里插入图片描述
在机器学习中,我们需要评估label和predicts之间的差距,使用KL散度刚刚好,由于KL散度中的前一部分−H(y)不变,故在优化过程中,只需要关注交叉熵就可以了。所以一般在机器学习中直接用用交叉熵做loss,评估模型。

Softmax:
在神经网络中怎样把前向传播得到的结果也变成概率分布呢?Softmax回归就是一个非常有用的方法。(所以面试官会经常问你,为什么交叉熵经常要个softmax一起使用?)
在这里插入图片描述
在这里插入图片描述
参考:
https://blog.csdn.net/tsyccnh/article/details/79163834

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值