机器学习
HiSakuraaa
这个作者很懒,什么都没留下…
展开
-
【机器学习(周志华)】C2 模型评估与选择
经验误差与过拟合 评估方法 性能度量 比较检验 偏差与方差 错误率:分类错误的样本总数的比例 E = a/m; 精度:1-a/m误差:学习器的实际预测与样本的真是输出之间的差异 训练误差:学习器在训练集上的误差泛化误差:新样本上的误差(我们希望得到泛化误差小的学习器)过拟合,欠拟合留出法:直接将数...原创 2018-11-23 17:36:17 · 268 阅读 · 0 评论 -
【机器学习(周志华)】 绪论
基本术语 假设空间与版本空间 归纳偏好 主要记录归纳偏好中的内容 奥卡姆剃刀:若有多个假设与观察一致,则选择最简单的那个。没有免费的午餐(No Free Lunch Theorem,简称NFL定理): 最后公式化简后, ,关于算法的变量被消掉,也就是说总误差与学习算法无关。 但是,需要值得注意的是NFL定理有一个重要前提:...原创 2018-11-22 16:53:28 · 168 阅读 · 0 评论 -
2、《Dynamic Pricing at Electric Vehicle ChargingStations for Queueing Delay Reduction》笔记
拥挤的充电站的长时间延迟可能会阻碍许多驾驶员转向EV。为解决这些问题,提出了一种新颖的动态定价政策,允许充电站根据车站的负荷实时调整服务费用。在我们的工作中,驱动程序的选择由具有多个变量的新差异函数建模,可以通过实际应用轻松验证和改进,并且我们的解决方案是从现实世界的电荷数据集中评估的。据我们所知,这是第一项考虑不同充电站之间的动态服务费用以实现负载平衡和减少队列延迟的工作。这使我们的工作更加现实和有益。原创 2019-08-13 16:03:47 · 268 阅读 · 0 评论