机器学习 第10章 降维与度量学习 概念总结与简单实践
一 解决的问题由k近邻算法引出,k近邻算法需要满足密采样,稀疏数据无法获取特定距离的近邻。但是现实问题中,数据属性非常多,形成高维空间,然而在高维空间下的计算量大,并且满足不了密采样的要求。于是,提出降维的方法,希望通过降维在低维空间映射出密采样,也易于学习。如何降维才能保证仍然保存高维空间数据的特征的呢?一种方法:希望在高低维空间,样本之间的距离是不变的,称为多维缩放,简称...
原创
2019-03-19 19:06:23 ·
589 阅读 ·
0 评论