机器学习 第6章 支持向量机 概念总结和简单实践

本文介绍了支持向量机(SVM)的基本原理,它旨在找到最优超平面,最大化与支持向量的距离以提高泛化能力。非线性问题通过核函数在高维空间实现线性可分。实践中,使用LIBSVM对比了线性核与高斯核在西瓜数据集上的应用,结果显示高斯核得到更好的边界划分,支持向量更直观地体现了边界特性。
摘要由CSDN通过智能技术生成

支持向量机解决的问题:在线性可分数据集上所有的划分超平面中寻找一个最优的超平面,它的解是唯一的。

寻找最优超平面的策略:最大化支持向量样本点与超平面的间隔,这样泛化能力最好。

核函数解决的问题:给非线性划分问题提供了线性解决的方法,即将实际的非线性数据集通过核函数映射到高维空间,使其在转换空间线性可分,然后再求解。

概念总结:

习题 6.2 使用LIBSVM 线性核和高斯核对西瓜数据集3.0进行训练,并比较支持向量。

# 表4-5
import pandas as pd
import numpy as np
data = np.loadtxt('./CH3-3watermeleondata.csv', delimiter=',')

X = data[:,0:2]
y = data[:,2]

# 线性核 --- LIBSVM已经可以在sklearn上直接使用,不用再按步骤安装了,即sklearn上的NuSVC模型
from sklearn.svm import NuSVC
nusvcclf = NuSVC(kernel='linear',random_state=0)
nusvcclf.fit(X,y)
# 看下预测结果
nusvcy_pred = nusvcclf.predict(X)
print(metrics.classification_report(y,nusvcy_pred))
linearVecto
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值