SVD 与 PCA 的直观解释(4): PCA 主成分分析

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
PCA主成分分析是一种常用的线性降维方法之一,它通过线性投影将高维数据映射到低维空间,并保留了原始数据的特征。在Python中,可以使用scikit-learn库进行PCA主成分分析的实现。下面是一个使用PCA进行降维的Python代码示例: ```python from sklearn.decomposition import PCA # 假设X_scaled是经过标准化后的特征矩阵 pca = PCA(n_components=2) pca.fit(X_scaled) X_pca = pca.transform(X_scaled) print(X_pca.shape) ``` 上述代码中,我们设置主成分数量为2,然后使用`fit()`方法对经过标准化的特征矩阵进行训练,再使用`transform()`方法进行降维。最后打印出降维后数据的形状。 另外,通过绘制散点图可以对降维结果进行可视化: ```python import matplotlib.pyplot as plt # X2是降维后的数据,wine.target是数据的标签 X2 = X_pca[wine.target==0] plt.scatter(X2[:,0], X2[:,1], c='r', s=60, edgecolor='k') plt.legend(wine.target_names, loc='best') plt.xlabel('component 1') plt.ylabel('component 2') plt.show() ``` 在绘制散点图时,我们选择两个主成分作为x轴和y轴,然后根据数据的标签进行分类绘制。此外,还可以使用热图来展示原始特征与主成分之间的关系: ```python plt.matshow(pca.components_, cmap='plasma') plt.yticks([0,1], ['component 1', 'component 2']) plt.colorbar() plt.xticks(range(len(wine.feature_names)), wine.feature_names, rotation=60, ha='left') plt.show() ``` 热图中的每个方格代表一个原始特征与主成分之间的关系,正数表示正相关,负数表示负相关。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值