用物理学和域知识训练“无标注样本的”神经网络( Outstanding Paper Award 优秀论文奖)

本文解析了一篇2017年AAAI会议上关于利用物理和领域知识无标注训练神经网络的优秀论文。通过高级先验如牛顿定律,论文展示了如何在自动驾驶等场景中预训练模型,降低人工标注成本并增强泛化能力。实验涉及物体运动预测、行人轨迹和图像逻辑判断,展示了其工业实用价值。
摘要由CSDN通过智能技术生成

2017的优秀论文奖:Label-Free Supervision of Neural Networks with Physics and Domain Knowledge

这篇论文可以运用到自动驾驶中,因为自动驾驶的环境有太多无样本标注的情况出现,没有人能对所有突发路况都事先了如指掌。这就是本论文最大应用价值之一。

在这里插入图片描述

借助高级的先验,进行无样本标注的训练,至少有两点好处:

  1. 省去了人工标注样本的人工成本。
  2. 高级的先验,可以在许多神经网络中复用,用来预训练。大大提高复用性和泛函能力。

这里的高级先验,可以是牛顿第二定律,也可以是万有引力公式等等(这是所谓的物理域。当然也可以有化学反应的域,天体运动域等等专业领域)。

所以论文的思路很简单:仅仅用这些公式就可以对视频中物体运动做预测了(虽然预测不是那么准确,但是,至少比没有预训练好多了,也比用人力去辛苦标注好多了)。

来看看如何做预训练(文章中叫“约束训练”(Constraint learning)):

在这里插入图片描述

我们的目标是训练神经网络f , 但是因为样本标签Y未知,我们用高级的先验 g 去约束Y的域值,比如,如果你在视频中抛一个物体,我们知道它应该符合牛顿第二定律,即,成抛物线的轨迹。所以在训练f 时,用先验g去约束f的训练,就能做到预训练。

所以,传统的有标注样本的训练是这样的:

在这里插入图片描述

而无标注样本的训练是这样的:

在这里插入图片描述

我们用高级先验g 约束神经网络f的训练,构造一个损失函数,同时给f一个正则项R,允许f 有一定的偏差和泛函能力。

有意思的是,这篇论文的大半篇幅用在了实验上(文章覆盖了3个典型实验),可见,评委会对文章的工业价值还是比较看重的。

第一个实验就是向上丢枕头的抛压运动实验了,它证明了仅仅加入物理公式的先验,就可以训练神经网络预测物体运动轨迹信息:

在这里插入图片描述
在这里插入图片描述

训练时,损失函数就是加入高级先验的损失函数:
在这里插入图片描述
其中:

在这里插入图片描述

正是用牛顿第二定律预判抛物线轨迹。

另一个实验,是预测视频中行人的行走轨迹:

在这里插入图片描述
在这里插入图片描述

使用一般的约束先验,就能达到很好的预测真实运动的效果,甚至比直接使用有标注样本训练有更好的泛化能力。作者认为如果使用全标注样本来训练,神经网络很容易过拟合。而使用无标注的样本训练,加入一个约束就会在整体上有效,如这个损失函数:

在这里插入图片描述

其中

在这里插入图片描述

表示限制在10mm范围内的运动。

最后一个实验,是预测图像出现的:

在这里插入图片描述

如果公主(金发)出现,那么马里奥也会出现, 但反之不然。橘黄和绿色的小怪兽随机出现。系统训练这种高级先验, 用来判断图片中有没有公主或者马里奥。第一列显示了样例图片。第二列和第三列分别显示对于公主和马里奥出现位置的预测。

此实验证明,一些约束的组合可以帮助更好地“无标注样本”地做出预测。

并且作者无标注样本的神经网络同样可以运用在离散的问题中(而不仅仅是视频)。

参考文献:

  1. http://www.aaai.org/Conferences/AAAI/2017/aaai17program.pdf
  2. Label-Free Supervision of Neural Networks with Physics and Domain Knowledge
  3. http://baike.baidu.com/item/AAAI/13827607
  4. 国际顶级人工智能会议AAAI 2017 开幕在即,雷锋网奉上四大看点集锦 | AAAI 2017
  5. AI会议的总结(by南大周志华)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ziix

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值