目录
4.2 多项式 与 eax/ sin ax/ cosax,将e和三角函数部分放进dx
4.3 多项式和lnx / arctanx / arcsinx,把多项式放进dx
1. 原函数和不定积分
原函数 Fx+C
不定积分 ∫fxdx=Fx+C
1.1 存在原理
1.2 但不连续也可能存在原函数
1.3 不定积分的性质
d∫与∫d: ∫ 1 dg(x) = g(x) + C, d∫g(x) = g(x)
∫ (fx±gx) dx可拆成两部分
∫ k·fx dx常数可先提
1.4 不定积分基本公式 (背
2. 第一换元积分法 凑微分
3. 第二换元积分法 换元法
还有直接令的形式,t = 根号下1+e2
4. 分部积分法
4.1 比较适用于两类不同函数相乘
4.2 多项式 与 eax/ sin ax/ cosax,将e和三角函数部分放进dx
4.3 多项式和lnx / arctanx / arcsinx,把多项式放进dx
4.4 e 与 sinx / cosx
把e放进dx,但是不能一步做出来
5. 三类常见可积函数积分
5.1 有理函数积分
分母分解因式,分子分母同乘凑微分