第四章 不定积分-my write

本文详细介绍了不定积分的原函数和不定积分的概念,以及三种解题方法:凑微分法、换元法和分部积分法。重点讲解了不定积分的基本公式,如secx、cscx、cotx等,并提供了三角有理式和简单无理函数积分的实例。此外,还强调了原函数在分段函数中的连续性和分部积分法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 原函数和不定积分

1.1 存在原理

1.2 但不连续也可能存在原函数

1.3  不定积分的性质

1.4 不定积分基本公式 (背

2. 第一换元积分法 凑微分 

3. 第二换元积分法 换元法 

​4. 分部积分法

4.1 比较适用于两类不同函数相乘

4.2 多项式 与 eax/ sin ax/ cosax,将e和三角函数部分放进dx

4.3 多项式和lnx / arctanx / arcsinx,把多项式放进dx

4.4 e 与 sinx / cosx

5. 三类常见可积函数积分

5.1 有理函数积分

5.2 三角有理式积分


1. 原函数和不定积分

原函数 Fx+C
不定积分 ∫fxdx=Fx+C

1.1 存在原理

1.2 但不连续也可能存在原函数

1.3  不定积分的性质

d∫与∫d: ∫ 1 dg(x) = g(x) + C, d∫g(x) = g(x)
∫ (fx±gx) dx可拆成两部分
∫ k·fx dx常数可先提

1.4 不定积分基本公式 (背

2. 第一换元积分法 凑微分 

3. 第二换元积分法 换元法 

还有直接令的形式,t = 根号下1+e2

4. 分部积分法

4.1 比较适用于两类不同函数相乘

4.2 多项式 与 eax/ sin ax/ cosax,将e和三角函数部分放进dx

4.3 多项式和lnx / arctanx / arcsinx,把多项式放进dx

4.4 e 与 sinx / cosx

把e放进dx,但是不能一步做出来


5. 三类常见可积函数积分


5.1 有理函数积分

分母分解因式,分子分母同乘凑微分


5.2 三角有理式积分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小硕算法工程师

你的鼓励将是我创作的最大动力哈

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值