RCNN, Fast-RCNN, Faster-RCNN

http://closure11.com/rcnn-fast-rcnn-faster-rcnn%E7%9A%84%E4%B8%80%E4%BA%9B%E4%BA%8B/

Faster-RCNN 论文笔记

Faster RCNN由两个模块组成:
1.deep fully convolutional network that proposes regions
2.Fast R-CNN detector that uses the proposed regions

RPN:tells the Fast R-CNN module where to look.

Region Proposal Networks
input: an image (of any size)
output: a set of rectangular object proposals,each with an objectness score
We model this process with a fully convolutional network.

Because our ultimate goal is to share computation with a Fast R-CNN object detection network,we assume that both nets share a common set of convolutional layers.
In our experiments, we investigate the Zeiler and Fergus model [32] (ZF), which has 5 shareable convolutional layers and the Simonyan and Zisserman model [3] (VGG-16), which has 13 shareable convolutional layers.

To generate region proposals,we slide a small network over the convolutional feature map output by the last shared convolutional layer. This small network takes as input an n × n spatial window of the input convolutional feature map.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值